{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Restrict the search for
dimethyl fumarate
to a specific field?
Status:
US Approved Rx
(2006)
Source:
ANDA077880
(2006)
Source URL:
First approved in 1995
Source:
GLUCOPHAGE by EMD SERONO INC
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Metformin is the most widely used drug to treat type 2 diabetes, and is one of only two oral antidiabetic drugs on the World Health Organization (WHO) list of essential medicines.
Metformin is an antihyperglycemic agent which improves glucose tolerance in patients with type 2 diabetes, lowering both basal and postprandial plasma glucose. Metformin decreases hepatic glucose production, decreases intestinal absorption of glucose, and improves insulin sensitivity by increasing peripheral glucose uptake and utilization. However, we still do not completely understand its mechanisms of action. The main effect of this drug from the biguanide family is to acutely decrease hepatic glucose production, mostly through a mild and transient inhibition of the mitochondrial respiratory chain complex I. In addition, the resulting decrease in hepatic energy status activates AMPK (AMP-activated protein kinase), a cellular metabolic sensor, providing a generally accepted mechanism for the action of metformin on hepatic gluconeogenesis. The use of metformin, the most commonly prescribed drug for type 2 diabetes, was repeatedly associated with the decreased risk of the occurrence of various types of cancers, especially of pancreas and colon and hepatocellular carcinoma.
Status:
US Approved Rx
(2014)
Source:
NDA205613
(2014)
Source URL:
First approved in 1994
Source:
RHINOCORT by ASTRAZENECA
Source URL:
Class (Stereo):
CHEMICAL (EPIMERIC)
Budesonide is a glucocorticoid used in the management of asthma, the treatment of various skin disorders, allergic rhinitis and ulcerative colitis. The precise mechanism of corticosteroid actions on inflammation in asthma is not well known. Inflammation is an important component in the pathogenesis of asthma. Corticosteroids have been shown to have a wide range of inhibitory activities against multiple cell types (e.g., mast cells, eosinophils, neutrophils, macrophages, and lymphocytes) and mediators (e.g., histamine, eicosanoids, leukotrienes, and cytokines) involved in allergic- and non-allergic-mediated inflammation. The anti-inflammatory actions of corticosteroids may contribute to their efficacy in asthma. Commonly reported side effects of budesonide include: acne vulgaris, moon face, and bruise. Other side effects include: ankle edema, hirsutism, weakness, arthralgia, nausea, and rhinitis. Ketoconazole, a potent inhibitor of cytochrome P450 (CYP) isoenzyme 3A4 (CYP3A4), the main metabolic enzyme for corticosteroids, increased plasma levels of orally ingested budesonide.
Status:
US Approved Rx
(2024)
Source:
ANDA217617
(2024)
Source URL:
First approved in 1992
Source:
ZEBETA by TEVA WOMENS
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
Conditions:
Bisoprolol is a cardioselective beta1-adrenergic blocking agent. It lower the heart rate and blood pressure and may be used to reduce workload on the heart and hence oxygen demands. This results in a reduction of heart rate, cardiac output, systolic and diastolic blood pressure, and possibly reflex orthostatic hypotension. Bisoprolol can be used to treat cardiovascular diseases such as hypertension, coronary heart disease, arrhythmias, ischemic heart diseases, and myocardial infarction after the acute event. General side effects are: fatigue, asthenia, chest pain, malaise, edema, weight gain, angioedema. Concurrent use of rifampin increases the metabolic clearance of bisoprolol fumarate, shortening its elimination half-life.
Status:
US Approved Rx
(2006)
Source:
NDA021958
(2006)
Source URL:
First approved in 1992
Source:
LAMISIL by NOVARTIS
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Terbinafine (brand name Lamisil, Terbisil, Terboderm and others) is an antifungal medication used to treat ringworm and fungal nail infections. Terbinafine inhibits ergosterol synthesis by inhibiting squalene epoxidase, an enzyme that is part of the fungal cell membrane synthesis pathway. Because terbinafine prevents the conversion of squalene to lanosterol, ergosterol cannot be synthesized. This is thought to change cell membrane permeability, causing fungal cell lysis. Many side effects and adverse drug reactions have been reported with oral terbinafine hydrochloride possibly due to its extensive biodistribution and the often extended durations involved in antifungal treatment (longer than two months).
Status:
US Approved Rx
(2007)
Source:
ANDA078103
(2007)
Source URL:
First approved in 1991
Source:
NDA019766
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Tenivastatin (well known as simvastatin acid or simvastatin hydroxy acid) is a pharmacologically active metabolite, which is formed in the mammalian organism from lactone prodrug, simvastatin. Tenivastatin is a potent reversible inhibitor of HMGCR (HMG-CoA reductase), reduces cholesterol synthesis and increases low-density lipoprotein (LDL) receptors on cell membranes of liver and extrahepatic tissues. It is also a substrate of organic anion transporting polypeptide 1B1 (OATP1B1/Oatp2), an influx transporter expressed on the sinusoidal membrane of hepatocytes. Recent studies have shown that OATP1B1 plays a clinically important role in the hepatic elimination of several drugs including statins, via mediating the hepatic uptake. In addition, was discovered, that the tenivastatin was a substrate of another transporter protein, human organic anion transporting polypeptide 3A1 (OATP3A1), which is predominately expressed in the heart. Presence of OATP3A1 in cardiomyocytes suggested that transporter could modulate the exposure of cardiac tissue to simvastatin acid due to its enrichment in cardiomyocytes. Increases in the uptake of simvastatin acid by OATP3A1 when combined with OATP substrates suggest the potential for drug-drug interactions that could influence clinical outcomes.
Status:
US Approved Rx
(2018)
Source:
ANDA208249
(2018)
Source URL:
First approved in 1991
Source:
ZITHROMAX by PFIZER
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Azithromycin is one of the world's best-selling antibiotics, used to treat or prevent certain bacterial infections: Acute bacterial exacerbations of chronic bronchitis in adults; acute bacterial sinusitis in adults; uncomplicated skin and skin structure infections in adults; urethritis and cervicitis in adults; genital ulcer disease in men; acute otitis media in pediatric patients; community-acquired pneumonia in adults and pediatric patients; pharyngitis/tonsillitis in adults and pediatric patients. Azithromycin should not be used in patients with pneumonia who are judged inappropriate for oral therapy because of moderate to severe illness or risk factors. A team of researchers at the Croatian pharmaceutical company Pliva, discovered azithromycin in 1980. It was patented in 1981. In 1986, Pliva and Pfizer signed a licensing agreement, which gave Pfizer exclusive rights for the sale of azithromycin in Western Europe and the United States. Pliva put its azithromycin on the market in Central and Eastern Europe under the brand name of Sumamed in 1988. Pfizer launched azithromycin under Pliva's license in other markets under the brand name Zithromax in 1991. Azithromycin is a semi-synthetic macrolide antibiotic of the azalide class. Like other macrolide antibiotics, azithromycin inhibits bacterial protein synthesis by binding to the 50S ribosomal subunit of the bacterial 70S ribosome. Binding inhibits peptidyl transferase activity and interferes with amino acid translocation during the process of translation. Its effects may be bacteriostatic or bactericidal depending of the organism and the drug concentration. Its long half-life, which enables once daily dosing and shorter administration durations, is a property distinct from other macrolides.
Status:
US Approved Rx
(2018)
Source:
ANDA210847
(2018)
Source URL:
First approved in 1991
Source:
PLENDIL by ASTRAZENECA
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
Targets:
Conditions:
Felodipine is a long-acting 1,4-dihydropyridine calcium channel blocker (CCB)b. It acts primarily on vascular smooth muscle cells by stabilizing voltage-gated L-type calcium channels in their inactive conformation. By inhibiting the influx of calcium in smooth muscle cells, felodipine prevents calcium-dependent myocyte contraction and vasoconstriction. Felodipine is the most potent CCB in use and is unique in that it exhibits fluorescent activity. In addition to binding to L-type calcium channels, felodipine binds to a number of calcium-binding proteins, exhibits competitive antagonism of the mineralcorticoid receptor, inhibits the activity of calmodulin-dependent cyclic nucleotide phosphodiesterase, and blocks calcium influx through voltage-gated T-type calcium channels. Felodipine is used to treat mild to moderate essential hypertension.
Status:
US Approved Rx
(2006)
Source:
ANDA077169
(2006)
Source URL:
First approved in 1990
Source:
DYNACIRC by SMITHKLINE BEECHAM
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
Conditions:
Isradipine (tradenames DynaCirc, Prescal) is a calcium channel blocker of the dihydropyridine class. It is usually prescribed for the treatment of high blood pressure in order to reduce the risk of stroke and heart attack. Except for diuretic activity, the mechanism of which is not clearly understood, the pharmacodynamics effects of isradipine observed in whole animals can also be explained by calcium channel blocking activity, especially dilating effects in arterioles, which reduce systemic resistance and lower blood pressure, with a small increase in resting heart rate. Isradipine binds to calcium channels with high affinity and specificity and inhibits calcium flux into cardiac and arterial smooth muscle cells. It exhibits greater selectivity towards arterial smooth muscle cells owing to alternative splicing of the alpha-1 subunit of the channel and increased prevalence of inactive channels in smooth muscle cells. Although like other dihydropyridine calcium channel blockers, isradipine has negative inotropic effects in vitro; studies conducted in intact anesthetized animals have shown that the vasodilating effect occurs at doses lower than those do which affect contractility. In patients with normal ventricular function, isradipine's afterload reducing properties lead to some increase in cardiac output. Effects in patients with impaired ventricular function have not been fully studied. Most adverse reactions were mild and related to the vasodilatory effects of isradipine (dizziness, edema, palpitations, flushing, tachycardia), and many were transient. About 5% of isradipine patients left studies prematurely because of adverse reactions (vs. 3% of placebo patients and 6% of active control patients), principally due to headache, edema, dizziness, palpitations, and gastrointestinal disturbances.
Status:
US Approved Rx
(2020)
Source:
ANDA212866
(2020)
Source URL:
First approved in 1989
Source:
ANDA078003
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Esomeprazole strontium is a proton pump inhibitor. It suppresses gastric acid secretion by specific inhibition H+/K+ ATPase in the gastric parietal cell. The S- and R-isomers of omeprazole are protonated and converted in the acidic compartment of the parietal cell forming the active inhibitor, the achiral sulphenamide. By acting specifically on the proton pump, esomeprazole blocks the final step in acid production, thus reducing gastric acidity. The drug is indicated for the treatment of gastroesophageal reflux disease, reduction the risk of NSAID-associated gastric ulcer, eradication of H.pylori, and pathological hypersecretory conditions.
Status:
US Approved Rx
(2022)
Source:
ANDA216096
(2022)
Source URL:
First approved in 1989
Source:
NDA019810
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)