U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 681 - 690 of 1728 results

Enoxacin is an oral broad-spectrum fluoroquinolone antibacterial agent used in the treatment of urinary tract infections and gonorrhea. Enoxacin is bactericidal drugs, eradicating bacteria by interfering with DNA replication. Like other fluoroquinolones, enoxacin functions by inhibiting bacterial DNA gyrase and topoisomerase IV. The inhibition of these enzymes prevents bacterial DNA replication, transcription, repair and recombination. Enoxacin is active against many Gram-positive bacteria. After oral administration enoxacin is rapidly and well absorbed from the gastrointestinal tract. The antibiotic is widely distributed throughout the body and in the different biological tissues. Tissue concentrations often exceed serum concentrations. The binding of enoxacin to serum proteins is 35 to 40%. The serum elimination half-life, in subjects with normal renal function, is approximately 6 hours. Approximately 60% of an orally administered dose is excreted in the urine as unchanged drug within 24 hours. Enoxacin, like other fluoroquinolones, is known to trigger seizures or lower the seizure threshold. The compound should not be administered to patients with epilepsy or a personal history of previous convulsive attacks as may promote the onset of these disorders.
Status:
US Previously Marketed
First approved in 1991

Class (Stereo):
CHEMICAL (ABSOLUTE)



Didanosine was developed by Bristol-Myers Squibb in collaboration with the NIH for the treatment of HIV-1 infections. Upon administration the drug is metabolized to the active metabolite which inhibits HIV-1 reverse transcriptase both by competing with deoxyadenosine 5'-triphosphate and by its incorporation into viral DNA. Didanosine was approved by FDA under the name Videx (among the other names).
Status:
US Previously Marketed
First approved in 1991

Class (Stereo):
CHEMICAL (ABSOLUTE)



Loracarbef (KT3777) is carbacephem antibiotic structurally identical to cefaclor, except that the sulfur atom of position 1 of the cephem nucleus has been replaced by carbon. It showed good affinity for penicillin-binding proteins. At low concentrations (< 2 mg/L) in vitro, it inhibits Streptococcus pneumoniae, S. pyogenes, beta-haemolytic streptococci groups B, C and G. Proteus mirabilis and Moraxella catarrhalis, including beta-lactamase-producing strains. At therapeutic plasma concentrations it is also active in vitro against most strains of Staphylococcus aureus, S. saprophyticus, Escherichia coli and beta-lactamase-positive and -negative strains of Haemophilus influenzae. Loracarbef has been indicated in the treatment of patients with mild to moderate infections caused by susceptible strains of the designated microorganisms.
Cefmetazole is a semisynthetic cephamycin antibiotic. It has a broad spectrum of activity comparable to that of the second-generation cephalosporins, covering gram-positive, gram-negative, and anaerobic bacteria. Its bactericidal action results from inhibition of cell wall synthesis. It effectively treats abdominal and respiratory tract infections, pelvic inflammatory disease, urinary tract infections, skin and soft tissue infections and used for surgical prophylaxis, reducing or eliminating signs and symptoms of infection. Cefmetazole has a low frequency of adverse effects, and a side effect profile similar to that of other cephamycins. Adverse effects following overdosage have included nausea, vomiting, epigastric distress, diarrhea, and convulsions.
Status:
US Previously Marketed
Source:
CEFPIRAMIDE SODIUM by WYETH AYERST
(1989)
Source URL:
First approved in 1989

Class (Stereo):
CHEMICAL (ABSOLUTE)



Cefpiramide or SM-1652 (sodium 7-[D(-)-alpha-(4-hydroxy-6-methylpyridine-3-carboxamido)-alpha-(4-hydroxyphenyl)acetamido]-3-[(1-methyl-1H-tetrazol-5-yl) thiomethyl]-3-cephem-4-carboxylate) is a semisynthetic cephalosporin derivative with a broad spectrum of antibacterial activity. This antibiotic has been reported to have potent in vitro and in vivo antibacterial activities against gram-positive and -negative bacteria.
Cefotiam is a third generation beta-lactam cephalosporin antibiotic. It has broad spectrum activity against Gram positive and Gram negative bacteria. It does not have activity against Pseudomonas aeruginosa. The bactericidal activity of cefotiam results from the inhibition of cell wall synthesis via affinity for penicillin-binding proteins (PBPs).
Status:
US Previously Marketed
First approved in 1987

Class (Stereo):
CHEMICAL (ABSOLUTE)



Cefmenoxime is a semisynthetic beta-lactam cephalosporin antibiotic with activity similar to that of cefotaxime. Like other 'third-generation' cephalosporins it is active in vitro against most common Gram-positive and Gram-negative pathogens, is a potent inhibitor of Enterobacteriaceae (including beta-lactamase-producing strains), and is resistant to hydrolysis by beta-lactamases. Cefmenoxime has a high rate of clinical efficacy in many types of infection and is at least equal in clinical and bacteriological efficacy to several other cephalosporins in urinary tract infections, respiratory tract infections, postoperative infections and gonorrhoea. The bactericidal activity of cefmenoxime results from the inhibition of cell wall synthesis via affinity for penicillin-binding proteins (PBPs). Cefmenoxime is stable in the presence of a variety of b-lactamases, including penicillinases and some cephalosporinases. Cefmenoxime is marketed in Japan under the brand name Bestron, indicated for the treatment of otitis externa, otitis media, and sinusitis. Cefmenoxime hydrochloride was approved by the U.S. Food and Drug Administration (FDA) on Dec 30, 1987. It was developed and marketed as Cefmax®, but it has being discontinued.
Status:
US Previously Marketed
First approved in 1986

Class (Stereo):
CHEMICAL (ACHIRAL)

Targets:


Clofazimine (Lamprene®) is a fat-soluble riminophenazine dye used for the treatment of leprosy. It has been used investigationally in combination with other antimycobacterial drugs to treat Mycobacterium avium infections in AIDS patients. Clofazimine (Lamprene®) exerts a slow bactericidal effect on Mycobacterium leprae (Hansen’s bacillus). It inhibits mycobacterial growth and binds preferentially to mycobacterial DNA. It also exerts anti-inflammatory properties in controlling erythema nodosum leprosum reactions. However, its precise mechanisms of action are unknown.
Norfloxacin is an antibacterial agent, It inhibits inhibits DNA synthesis by inhibiting DNA gyrase enzyme. Norfloxacin was approved in 1986 for treatment of urinary tract infections, gynecological infections, prostatitis, gonorhhea and bladder infections. In ophtalmology, norfloxacin is used for treatment of conjunctivitus.
Status:
US Previously Marketed
First approved in 1984

Class (Stereo):
CHEMICAL (ABSOLUTE)



Cefonicid is a semi-synthetic broad-spectrum cephalosporin antibiotic resistant to beta-lactamases. Similarly to other cephalosporins, cefonicid exerts its antibacterial activity through the inhibition of the bacterial cell-wall synthesis. Its in vitro and in vivo activity against a wide range of Gram-positive and Gram-negative microorganisms is documented.