U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

Details

Stereochemistry ACHIRAL
Molecular Formula C15H17FN4O3
Molecular Weight 320.3195
Optical Activity NONE
Defined Stereocenters 0 / 0
E/Z Centers 0
Charge 0

SHOW SMILES / InChI
Structure of ENOXACIN

SMILES

CCn1cc(c(=O)c2cc(c(nc21)N3CCNCC3)F)C(=O)O

InChI

InChIKey=IDYZIJYBMGIQMJ-UHFFFAOYSA-N
InChI=1S/C15H17FN4O3/c1-2-19-8-10(15(22)23)12(21)9-7-11(16)14(18-13(9)19)20-5-3-17-4-6-20/h7-8,17H,2-6H2,1H3,(H,22,23)

HIDE SMILES / InChI

Description
Curator's Comment:: description was created based on several sources, including https://www.ncbi.nlm.nih.gov/pubmed/6226242 | https://www.ncbi.nlm.nih.gov/pubmed/8429114 | https://www.ncbi.nlm.nih.gov/pubmed/8494374

Enoxacin is an oral broad-spectrum fluoroquinolone antibacterial agent used in the treatment of urinary tract infections and gonorrhea. Enoxacin is bactericidal drugs, eradicating bacteria by interfering with DNA replication. Like other fluoroquinolones, enoxacin functions by inhibiting bacterial DNA gyrase and topoisomerase IV. The inhibition of these enzymes prevents bacterial DNA replication, transcription, repair and recombination. Enoxacin is active against many Gram-positive bacteria. After oral administration enoxacin is rapidly and well absorbed from the gastrointestinal tract. The antibiotic is widely distributed throughout the body and in the different biological tissues. Tissue concentrations often exceed serum concentrations. The binding of enoxacin to serum proteins is 35 to 40%. The serum elimination half-life, in subjects with normal renal function, is approximately 6 hours. Approximately 60% of an orally administered dose is excreted in the urine as unchanged drug within 24 hours. Enoxacin, like other fluoroquinolones, is known to trigger seizures or lower the seizure threshold. The compound should not be administered to patients with epilepsy or a personal history of previous convulsive attacks as may promote the onset of these disorders.

Originator

Curator's Comment:: Enoxacin is a new pyridonecarboxylic acid derivative synthesized by Matsumoto et al.

Approval Year

Targets

Targets

Primary TargetPharmacologyConditionPotency
Conditions

Conditions

ConditionModalityTargetsHighest PhaseProduct
Curative
PENETREX

Approved Use

INDICATIONS AND USAGE. Uncomplicated urethral or cervical gonorrhea due to Neisseria gonorrhoeae. Uncomplicated urinary tract infections (cystitis) due to Escherichia coli, Staphylococcus epidermidis*, or Staphylococcus saprophyticus. Complicated urinary tract infections due to Escherichia coli, Klebsiella pneumoniae, Proteus mirabilis, Pseudomonas aeruginosa, Staphylococcus epidermidis, or Enterobacter cloacae.

Launch Date

6.9413759E11
Curative
PENETREX

Approved Use

INDICATIONS AND USAGE. Uncomplicated urethral or cervical gonorrhea due to Neisseria gonorrhoeae. Uncomplicated urinary tract infections (cystitis) due to Escherichia coli, Staphylococcus epidermidis*, or Staphylococcus saprophyticus. Complicated urinary tract infections due to Escherichia coli, Klebsiella pneumoniae, Proteus mirabilis, Pseudomonas aeruginosa, Staphylococcus epidermidis, or Enterobacter cloacae.

Launch Date

6.9413759E11
Curative
PENETREX

Approved Use

INDICATIONS AND USAGE. Uncomplicated urethral or cervical gonorrhea due to Neisseria gonorrhoeae. Uncomplicated urinary tract infections (cystitis) due to Escherichia coli, Staphylococcus epidermidis*, or Staphylococcus saprophyticus. Complicated urinary tract infections due to Escherichia coli, Klebsiella pneumoniae, Proteus mirabilis, Pseudomonas aeruginosa, Staphylococcus epidermidis, or Enterobacter cloacae.

Launch Date

6.9413759E11
Cmax

Cmax

ValueDoseCo-administeredAnalytePopulation
7.4 mg/L
600 mg 2 times / day steady-state, oral
dose: 600 mg
route of administration: Oral
experiment type: STEADY-STATE
co-administered:
4-OXO-ENOXACIN serum
Homo sapiens
population: UNHEALTHY
age: ADULT
sex: FEMALE / MALE
food status: FED
0.7 mg/L
400 mg 2 times / day steady-state, oral
dose: 400 mg
route of administration: Oral
experiment type: STEADY-STATE
co-administered:
4-OXO-ENOXACIN serum
Homo sapiens
population: UNHEALTHY
age: ADULT
sex: FEMALE / MALE
food status: FED
3.8 mg/L
800 mg single, oral
dose: 800 mg
route of administration: Oral
experiment type: SINGLE
co-administered:
ENOXACIN plasma
Homo sapiens
population: HEALTHY
age: ADULT
sex: MALE
food status: FASTED
6.58 mg/L
800 mg single, intravenous
dose: 800 mg
route of administration: Intravenous
experiment type: SINGLE
co-administered:
ENOXACIN plasma
Homo sapiens
population: HEALTHY
age: ADULT
sex: MALE
food status: FASTED
1.02 mg/L
200 mg single, oral
dose: 200 mg
route of administration: Oral
experiment type: SINGLE
co-administered:
ENOXACIN plasma
Homo sapiens
population: HEALTHY
age: ADULT
sex: MALE
food status: FASTED
1.83 mg/L
200 mg single, intravenous
dose: 200 mg
route of administration: Intravenous
experiment type: SINGLE
co-administered:
ENOXACIN plasma
Homo sapiens
population: HEALTHY
age: ADULT
sex: MALE
food status: FASTED
4.8 mg/L
400 mg 2 times / day steady-state, oral
dose: 400 mg
route of administration: Oral
experiment type: STEADY-STATE
co-administered:
ENOXACIN serum
Homo sapiens
population: UNHEALTHY
age: ADULT
sex: FEMALE / MALE
food status: FED
7.4 mg/L
600 mg 2 times / day steady-state, oral
dose: 600 mg
route of administration: Oral
experiment type: STEADY-STATE
co-administered:
ENOXACIN serum
Homo sapiens
population: UNHEALTHY
age: ADULT
sex: FEMALE / MALE
food status: FED
AUC

AUC

ValueDoseCo-administeredAnalytePopulation
25.75 mg × h/L
800 mg single, oral
dose: 800 mg
route of administration: Oral
experiment type: SINGLE
co-administered:
ENOXACIN plasma
Homo sapiens
population: HEALTHY
age: ADULT
sex: MALE
food status: FASTED
29.08 mg × h/L
800 mg single, intravenous
dose: 800 mg
route of administration: Intravenous
experiment type: SINGLE
co-administered:
ENOXACIN plasma
Homo sapiens
population: HEALTHY
age: ADULT
sex: MALE
food status: FASTED
4.67 mg × h/L
200 mg single, oral
dose: 200 mg
route of administration: Oral
experiment type: SINGLE
co-administered:
ENOXACIN plasma
Homo sapiens
population: HEALTHY
age: ADULT
sex: MALE
food status: FASTED
5.35 mg × h/L
200 mg single, intravenous
dose: 200 mg
route of administration: Intravenous
experiment type: SINGLE
co-administered:
ENOXACIN plasma
Homo sapiens
population: HEALTHY
age: ADULT
sex: MALE
food status: FASTED
T1/2

T1/2

ValueDoseCo-administeredAnalytePopulation
6 h
600 mg 2 times / day steady-state, oral
dose: 600 mg
route of administration: Oral
experiment type: STEADY-STATE
co-administered:
4-OXO-ENOXACIN serum
Homo sapiens
population: UNHEALTHY
age: ADULT
sex: FEMALE / MALE
food status: FED
4.9 h
800 mg single, oral
dose: 800 mg
route of administration: Oral
experiment type: SINGLE
co-administered:
ENOXACIN plasma
Homo sapiens
population: HEALTHY
age: ADULT
sex: MALE
food status: FASTED
4.9 h
800 mg single, intravenous
dose: 800 mg
route of administration: Intravenous
experiment type: SINGLE
co-administered:
ENOXACIN plasma
Homo sapiens
population: HEALTHY
age: ADULT
sex: MALE
food status: FASTED
3.2 h
200 mg single, oral
dose: 200 mg
route of administration: Oral
experiment type: SINGLE
co-administered:
ENOXACIN plasma
Homo sapiens
population: HEALTHY
age: ADULT
sex: MALE
food status: FASTED
3.2 h
200 mg single, intravenous
dose: 200 mg
route of administration: Intravenous
experiment type: SINGLE
co-administered:
ENOXACIN plasma
Homo sapiens
population: HEALTHY
age: ADULT
sex: MALE
food status: FASTED
4.5 h
400 mg 2 times / day steady-state, oral
dose: 400 mg
route of administration: Oral
experiment type: STEADY-STATE
co-administered:
ENOXACIN serum
Homo sapiens
population: UNHEALTHY
age: ADULT
sex: FEMALE / MALE
food status: FED
6 h
600 mg 2 times / day steady-state, oral
dose: 600 mg
route of administration: Oral
experiment type: STEADY-STATE
co-administered:
ENOXACIN serum
Homo sapiens
population: UNHEALTHY
age: ADULT
sex: FEMALE / MALE
food status: FED
Doses

Doses

DosePopulationAdverse events​
600 mg single, oral
Highest studied dose
Dose: 600 mg
Route: oral
Route: single
Dose: 600 mg
Sources:
unhealthy, 41.9 years
n = 79
Health Status: unhealthy
Condition: cystitis
Age Group: 41.9 years
Sex: M+F
Population Size: 79
Sources:
200 mg 2 times / day steady, oral
Recommended
Dose: 200 mg, 2 times / day
Route: oral
Route: steady
Dose: 200 mg, 2 times / day
Sources:
unhealthy, 43.8 years
n = 75
Health Status: unhealthy
Condition: cystitis
Age Group: 43.8 years
Sex: M+F
Population Size: 75
Sources:
600 mg 3 times / day multiple, oral (max)
Highest studied dose
Dose: 600 mg, 3 times / day
Route: oral
Route: multiple
Dose: 600 mg, 3 times / day
Sources:
unhealthy, adult
n = 20060
Health Status: unhealthy
Condition: Gram-negative urinary tract pathogens
Age Group: adult
Sex: M+F
Population Size: 20060
Sources:
Other AEs: Gastrointestinal disorders, Epidermal and dermal conditions...
Other AEs:
Gastrointestinal disorders (1.3%)
Epidermal and dermal conditions (0.4%)
Sources:
AEs

AEs

AESignificanceDosePopulation
Epidermal and dermal conditions 0.4%
600 mg 3 times / day multiple, oral (max)
Highest studied dose
Dose: 600 mg, 3 times / day
Route: oral
Route: multiple
Dose: 600 mg, 3 times / day
Sources:
unhealthy, adult
n = 20060
Health Status: unhealthy
Condition: Gram-negative urinary tract pathogens
Age Group: adult
Sex: M+F
Population Size: 20060
Sources:
Gastrointestinal disorders 1.3%
600 mg 3 times / day multiple, oral (max)
Highest studied dose
Dose: 600 mg, 3 times / day
Route: oral
Route: multiple
Dose: 600 mg, 3 times / day
Sources:
unhealthy, adult
n = 20060
Health Status: unhealthy
Condition: Gram-negative urinary tract pathogens
Age Group: adult
Sex: M+F
Population Size: 20060
Sources:
Overview

Overview

CYP3A4CYP2C9CYP2D6hERG
Drug as perpetrator​Drug as victim

Drug as victim

PubMed

PubMed

TitleDatePubMed
Assessment of temafloxacin neurotoxicity in rodents.
1991 Dec 30
Repeated treatment with quinolones potentiates the seizures induced by aminophylline in genetically epilepsy-prone rats.
1992 Sep
Anti-toxoplasma activities of 24 quinolones and fluoroquinolones in vitro: prediction of activity by molecular topology and virtual computational techniques.
2000 Oct
Prediction of quinolone activity against Mycobacterium avium by molecular topology and virtual computational screening.
2000 Oct
History of quinolones and their side effects.
2001
A pharmacokinetic/pharmacodynamic approach to show that not all fluoroquinolones exhibit similar sensitivity toward the proconvulsant effect of biphenyl acetic acid in rats.
2001 Dec
In vitro method for prediction of the phototoxic potentials of fluoroquinolones.
2001 Dec
Quinolones and false-positive urine screening for opiates by immunoassay technology.
2001 Dec 26
Analysis of fluoroquinolone-mediated photosensitization of 2'-deoxyguanosine, calf thymus and cellular DNA: determination of type-I, type-II and triplet-triplet energy transfer mechanism contribution.
2001 Mar
Effect of liposomes and niosomes on skin permeation of enoxacin.
2001 May 21
Selective separation and simultaneous determination of trace levels of five types of fluorinated quinolone drugs by thin-layer chromatography/fluorescence densitometry.
2001 May-Jun
Spectrophotometric determination of enoxacin as ion-pairs with bromophenol blue and bromocresol purple in bulk and pharmaceutical dosage form.
2002 Jul 1
Possible involvement of P-glycoprotein in the biliary excretion of grepafloxacin.
2002 Mar
Osteoadsorptive bisphosphonate derivatives of fluoroquinolone antibacterials.
2002 May 23
In vitro photochemical clastogenicity of quinolone antibacterial agents studied by a chromosomal aberration test with light irradiation.
2002 May 27
[Synthesis and antibacterial activity of pyridonecarboxylic acid derivatives containing 2-methyl-5-nitroimidazol].
2003 Apr
Binding characteristics of fluoroquinolones to synthetic levodopa melanin.
2003 Aug
Pharmacological evaluation of garenoxacin, a novel des-F(6)-quinolone antimicrobial agent: effects on the central nervous system.
2003 Feb
Dead bugs don't mutate: susceptibility issues in the emergence of bacterial resistance.
2003 Jan
Interference-free analysis using three-way fluorescence data and the parallel factor model. Determination of fluoroquinolone antibiotics in human serum.
2003 Jun 1
Relationship between extent of inhibition and inhibitor dose: literature evaluation based on the metabolism and transport drug interaction database.
2003 Oct
Synthesis and in vitro antibacterial evaluation of N-[5-(5-nitro-2-thienyl)-1,3,4-thiadiazole-2-yl] piperazinyl quinolones.
2003 Sep
Comparative evaluation of antiproliferative activity and induction of apoptosis by some fluoroquinolones with a human non-small cell lung cancer cell line in culture.
2004 Apr-Jun
Validation of HPLC method for determination of six fluoroquinolones: cinoxacin, ciprofloxacin, enoxacin, lomefloxacin, norfloxacin and ofloxacin.
2004 Dec
Sensitivity and spectrum of bacterial isolates in infectious otitis externa.
2004 Mar
HPLC determination of enoxacin, ciprofloxacin, norfloxacin and ofloxacin with photoinduced fluorimetric (PIF) detection and multiemission scanning: application to urine and serum.
2005 Aug 5
Selective action of fluoroquinolones against intracellular amastigotes of Leishmania (Viannia) panamensis in vitro.
2005 Dec
Celecoxib does not induce convulsions nor does it affect GABAA receptor binding activity in the presence of new quinolones in mice.
2005 Jan 10
Structure-phototoxicity relationship in Balb/c mice treated with fluoroquinolone derivatives, followed by ultraviolet-A irradiation.
2005 Jul 4
Flow-injection electrogenerated chemiluminescence determination of fluoroquinolones based on its sensitizing effect.
2005 Jul-Oct
Prediction of genotoxicity of chemical compounds by statistical learning methods.
2005 Jun
Interaction study between enoxacin and fluvoxamine.
2005 Jun
Antimicrosporidial activity of (fluoro)quinolones in vitro and in vivo.
2005 May
Fluoroquinolone-resistant Campylobacter isolates from conventional and antibiotic-free chicken products.
2005 May
Bench-to-bedside review: antimicrobial utilization strategies aimed at preventing the emergence of bacterial resistance in the intensive care unit.
2005 Oct 5
Effect of fluoroquinolones on plasma glucose levels in fasted and glucose-loaded mice.
2006 Apr
Radiation-induced in vitro phototoxic potential of some fluoroquinolones.
2006 Jan
Photophysics and photochemistry of nalidixic acid.
2006 Jan-Feb
Induction of keratinocyte apoptosis by photosensitizing chemicals plus UVA.
2007 Feb
Patents

Sample Use Guides

Enoxacin should be taken at least one hour before or at least two hours after a meal. For treatment uncomplicated urethral or cervical gonorrhea: 400 mg single dose. For treatment uncomplicated urinary tract infections 200 mg q12h for 7 days. For treatment complicated urinary tract infections: 400 mg q12h for 14 days. Dosage should be adjusted in patients with a creatinine clearance value of 30 mL/min/1.73 m 2 or less.
Route of Administration: Oral
In Vitro Use Guide
The in vitro antibacterial activity of AT-2266 (Enoxacin ) was tested by the determination of minimal bactericidal concentrations (MBCs) and the reduction of viable cells during exposure to the drug for 24 h. MIC90s of AT-2266 for P. aeruginosa resistant to gentamicin and Enterobacteriaceae resistant to nalidixic acid were 3.13 and 12.5 mkg/ml, respectively
Name Type Language
ENOXACIN
INN   MART.   MI   ORANGE BOOK   USAN   VANDF   WHO-DD  
USAN   INN  
Official Name English
NSC-629661
Code English
PD 107779
Code English
CI-919
Code English
1,8-NAPHTHYRIDINE-3-CARBOXYLIC ACID, 1-ETHYL-6-FLUORO-1,4-DIHYDRO-4-OXO-7-(1-PIPERAZINYL)
Common Name English
AT-2266
Code English
ENOXACIN [MI]
Common Name English
1-ETHYL-6-FLUORO-4-OXO-7-PIPERAZIN-1-YL-1,4-DIHYDRO-1,8-NAPHTHYRIDINE-3-CARBOXYLIC ACID
Systematic Name English
ENOXACIN [VANDF]
Common Name English
PD-107779
Code English
PENETREX
Brand Name English
ENOXACIN [USAN]
Common Name English
NSC-758416
Code English
ENOXACIN [ORANGE BOOK]
Common Name English
ENOXACIN [INN]
Common Name English
ENOXACIN [WHO-DD]
Common Name English
ENOXACIN [MART.]
Common Name English
Classification Tree Code System Code
EU-Orphan Drug EU/3/15/1459
Created by admin on Fri Jun 25 21:51:50 UTC 2021 , Edited by admin on Fri Jun 25 21:51:50 UTC 2021
WHO-VATC QJ01MA04
Created by admin on Fri Jun 25 21:51:50 UTC 2021 , Edited by admin on Fri Jun 25 21:51:50 UTC 2021
NCI_THESAURUS C795
Created by admin on Fri Jun 25 21:51:50 UTC 2021 , Edited by admin on Fri Jun 25 21:51:50 UTC 2021
WHO-ATC J01MA04
Created by admin on Fri Jun 25 21:51:50 UTC 2021 , Edited by admin on Fri Jun 25 21:51:50 UTC 2021
Code System Code Type Description
DRUG CENTRAL
1013
Created by admin on Fri Jun 25 21:51:50 UTC 2021 , Edited by admin on Fri Jun 25 21:51:50 UTC 2021
PRIMARY
MESH
D015365
Created by admin on Fri Jun 25 21:51:50 UTC 2021 , Edited by admin on Fri Jun 25 21:51:50 UTC 2021
PRIMARY
CAS
74011-58-8
Created by admin on Fri Jun 25 21:51:50 UTC 2021 , Edited by admin on Fri Jun 25 21:51:50 UTC 2021
PRIMARY
ChEMBL
CHEMBL826
Created by admin on Fri Jun 25 21:51:50 UTC 2021 , Edited by admin on Fri Jun 25 21:51:50 UTC 2021
PRIMARY
INN
5351
Created by admin on Fri Jun 25 21:51:50 UTC 2021 , Edited by admin on Fri Jun 25 21:51:50 UTC 2021
PRIMARY
FDA UNII
325OGW249P
Created by admin on Fri Jun 25 21:51:50 UTC 2021 , Edited by admin on Fri Jun 25 21:51:50 UTC 2021
PRIMARY
NCI_THESAURUS
C65512
Created by admin on Fri Jun 25 21:51:50 UTC 2021 , Edited by admin on Fri Jun 25 21:51:50 UTC 2021
PRIMARY
WIKIPEDIA
ENOXACIN
Created by admin on Fri Jun 25 21:51:50 UTC 2021 , Edited by admin on Fri Jun 25 21:51:50 UTC 2021
PRIMARY
DRUG BANK
DB00467
Created by admin on Fri Jun 25 21:51:50 UTC 2021 , Edited by admin on Fri Jun 25 21:51:50 UTC 2021
PRIMARY
LACTMED
Enoxacin
Created by admin on Fri Jun 25 21:51:50 UTC 2021 , Edited by admin on Fri Jun 25 21:51:50 UTC 2021
PRIMARY
IUPHAR
1157
Created by admin on Fri Jun 25 21:51:50 UTC 2021 , Edited by admin on Fri Jun 25 21:51:50 UTC 2021
PRIMARY
PUBCHEM
3229
Created by admin on Fri Jun 25 21:51:50 UTC 2021 , Edited by admin on Fri Jun 25 21:51:50 UTC 2021
PRIMARY
RXCUI
3925
Created by admin on Fri Jun 25 21:51:50 UTC 2021 , Edited by admin on Fri Jun 25 21:51:50 UTC 2021
PRIMARY RxNorm
EVMPD
SUB06540MIG
Created by admin on Fri Jun 25 21:51:50 UTC 2021 , Edited by admin on Fri Jun 25 21:51:50 UTC 2021
PRIMARY
IUPHAR
316
Created by admin on Fri Jun 25 21:51:50 UTC 2021 , Edited by admin on Fri Jun 25 21:51:50 UTC 2021
PRIMARY
EPA CompTox
74011-58-8
Created by admin on Fri Jun 25 21:51:50 UTC 2021 , Edited by admin on Fri Jun 25 21:51:50 UTC 2021
PRIMARY
MERCK INDEX
M4911
Created by admin on Fri Jun 25 21:51:50 UTC 2021 , Edited by admin on Fri Jun 25 21:51:50 UTC 2021
PRIMARY Merck Index