{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Search results for vitamin root_references_citation in Reference Text / Citation (approximate match)
Status:
Investigational
Source:
NCT01697930: Phase 1 Interventional Recruiting Solid Malignancy
(2012)
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Status:
Investigational
Source:
NCT02258555: Phase 1 Interventional Terminated Follicular Lymphoma
(2015)
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Status:
Investigational
Source:
NCT03155620: Phase 2 Interventional Active, not recruiting Advanced Malignant Solid Neoplasm
(2017)
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
LY3023414, an investigational drug, is a small molecule that that demonstrates activity against PI3K, mTOR, and DNA-PK in tumor cells, thereby inducing cell-cycle effects and inhibiting cancer cell viability. As shown in vitro LY3023414 inhibits the ability of PI3K and mTOR to phosphorylate substrates in the PI3K/mTOR pathway, one of the most frequently mutated pathways in cancer, leading to cancer progression and resistance to existing treatments. Downstream target inhibition by LY3023414 occurs rapidly via an intermittent “on/off” mechanism that may enhance the drug's clinical tolerability, which may in turn allow LY3023414 to overcome some of the toxicities associated with PI3K/mTOR inhibitors and potentially reduce the emergence of feedback mechanisms leading to resistance. The physicochemical and absorption properties of LY3023414 are favorable, as evidenced by the molecule's high solubility across a wide pH range and high oral bioavailability. On the basis of these findings, LY3023414 is currently being evaluated in clinical trials in patients with advanced cancer such as metastatic prostate cancer and non-small cell lung cancer in combination with other chemotherapeutic agents and in endometrial cancer as a monotherapy.
Status:
Investigational
Source:
NCT04638387: Not Applicable Interventional Terminated Osteoarthritis, Knee
(2020)
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Withaferin A is one of the most bioactive phytoconstituents of Withania somnifera, a well-known herb in Ayurvedic medical tradition of India. Due to the lactonal steroid's potential to modulate multiple oncogenic pathways, Withaferin A has gained much attention as a possible anti-neoplastic agent. Systematic research on the evaluation of anticancer activities of withaferin A was started around the 1970s. Since then, a large number of studies have demonstrated the ability of withaferin A to suppress the in vivo growth of various human cancer cells’ xenograft tumors as well as experimentally induced carcinogenesis in different rodent models. It has being reported that withaferin-A reduced the growth of human prostate cancer (PC3) cells tumor xenograft in nude mice by blocking the tumor angiogenesis and inducing intratumoral apoptosis. According to this study, i.p. administration of withaferin-A caused regression of implanted tumor cells by decreasing the expression of angiogenesis marker CD31, inducing the expression of proapoptotic protein Bax, and activating caspase-3 via inhibition of nuclear factor-κB (NF-κB) signaling pathway. In a separate study, intratumoral administration of withaferin-A arrested PC3 cells’ xenograft tumor growth in mice by inducing tumor cell death via upregulation of prostate apoptosis response-4 (Par-4). Anticancer activity of withaferin-A has also being demonstrated for gynecological cancer, melanoma, thyroid, gastrointestinal and other types of cancer. Mechanistic basis of the anticancer effects of withaferin-A includes: (1) reinforcement of cellular antioxidant and/or detoxification system; (2) suppression of inflammatory pathways; (3) selective inhibition of tumor cell proliferation and induction of apoptosis; (4) suppression of tumor angiogenesis; (5) blockade of epithelial-to-mesenchymal transition (EMT), tumor invasion, and metastasis; (6) alteration of tumor cell metabolism; (7) immunomodulation; and (8) eradication of cancer stem cells.
Status:
Investigational
Source:
NCT02350426: Phase 1 Interventional Terminated Arthritis, Rheumatoid
(2015)
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Flutriciclamide F18 (18F-GE-180), a translocator protein (TSPO)-PET radiotracer was used using in different pathologies. This agent was studied in phase I clinical trial to assess inflammation in rheumatoid arthritis. However, this study was terminated because of the pre-defined stopping criteria in the protocol.
Status:
Investigational
Source:
NCT01927666: Not Applicable Interventional Completed Healthy
(2012)
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Status:
Investigational
Source:
NCT04669067: Phase 1/Phase 2 Interventional Active, not recruiting Acute Myeloid Leukemia
(2021)
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
p53 is a critical tumor suppressor and is the most frequently inactivated gene in human cancer. Inhibition of the interaction of p53 with its negative regulator MDM2 represents a promising clinical strategy to treat p53 wild-type tumors. AMG 232 is a potential best-in-class inhibitor of the MDM2-p53 interaction and is currently in clinical trials. Based on X-ray cocrystal structures a model of AMG 232 bound to MDM2 was developed. The model shows that the m-chlorophenyl, the p-chlorophenyl, and C-linked isopropyl fragments of AMG 232 bind to the Leu 26(p53), Trp 23(p53), and Phe 19(p53) pockets of MDM2, respectively. The carboxylic acid forms a salt bridge with His 96 and the isopropyl sulfone forms a novel interaction with the glycine shelf region of MDM2. AMG 232 in phase II in combination with trametinib and dabrafenib in subjects with metastatic melanoma; in phase I for the treatment of solid tumors, multiple myeloma and Acute Myeloid Leukemia.
Status:
Investigational
Source:
NCT03547115: Phase 1 Interventional Recruiting Follicular Lymphoma (FL)
(2018)
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Voruciclib (also known as P1446A-05) is a flavone-based, potent and selective CDK 4/6 inhibitor with activity in multiple BRAF-mutant and wild type cell lines. It is currently in clinical trials in combination with BRAF inhibitor (PLX4032) to treat advanced BRAF-mutant melanoma. Voruciclib has significant inhibitory activity against cutaneous and uveal melanoma. Mechanistic studies revealed that P1446A-05 inhibits phosphorylation targets of CDK members, and induces cell cycle arrest and apoptosis irrespective of melanoma genotype or phenotype. Voruciclib Hydrochloride is in phase I clinical trials by Piramal Life Sciences for the treatment of chronic lymphocytic leukaemia and malignant melanoma.
Status:
Investigational
Source:
NCT04327024: Phase 2 Interventional Completed Heart Failure With Preserved Ejection Fraction (HFpEF)
(2020)
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Verinurad (RDEA3170) is a selective uric acid reabsorption inhibitor in clinical development for the treatment of gout and asymptomatic hyperuricemia. Verinurad specifically inhibits URAT1 with a potency of 25 nM. High affinity inhibition of uric acid transport requires URAT1 residues Cys-32, Ser-35, Phe-365 and Ile-481. Unlike other available uricosuric agents, the requirement for Cys-32 is unique to verinurad. Verinurad doses as low as 2.5 mg produce significant sUA lowering in humans, and this greater reduction in sUA may lead to improved outcomes and medical benefits for patients with gout. Verinurad in monotherapy studies has been associated with increased urinary uric acid concentrations and low rates of serum creatinine (sCr) elevation. Verinurad combined with febuxostat decreased sUA dose-dependently while maintaining uric acid excretion similar to baseline. All dose combinations of verinurad and febuxostat were generally well tolerated.
Status:
Investigational
Source:
NCT03969888: Phase 2 Interventional Completed Cystic Fibrosis
(2019)
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)