U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 31 - 40 of 1337 results

Sevoflurane is a general anesthetic that is FDA approved for the induction and maintenance of general anesthesia in adult and pediatric patients for inpatient and outpatient surgery. Sevoflurane induces a reduction in junctional conductance by decreasing gap junction channel opening times and increasing gap junction channel closing times. Sevoflurane also activates calcium dependent ATPase in the sarcoplasmic reticulum by increasing the fluidity of the lipid membrane. It also appears to bind the D subunit of ATP synthase and NADH dehydogenase and also binds to the GABA receptor. Common adverse reactions include cardiovascular: bradyarrhythmia, hypotension, gastrointestinal: nausea, vomiting, neurologic: somnolence, psychiatric: agitation, respiratory: cough, interrupted breathing and other: shivering.
Fluvoxamine is an antidepressant which functions pharmacologically as a selective serotonin reuptake inhibitor. Though it is in the same class as other SSRI drugs, it is most often used to treat obsessive-compulsive disorder. Fluvoxamine has been in use in clinical practice since 1983 and has a clinical trial database comprised of approximately 35,000 patients. It was launched in the US in December 1994 and in Japan in June 1999. As of the end of 1995, more than 10 million patients worldwide have been treated with fluvoxamine. The exact mechanism of action of fluvoxamine has not been fully determined, but appears to be linked to its inhibition of CNS neuronal uptake of serotonin. Fluvoxamine blocks the reuptake of serotonin at the serotonin reuptake pump of the neuronal membrane, enhancing the actions of serotonin on 5HT1A autoreceptors. In-vitro studies suggest that fluvoxamine is more potent than clomipramine, fluoxetine, and desipramine as a serotonin-reuptake inhibitor. Studies have also demonstrated that fluvoxamine has virtually no affinity for α1- or α2-adrenergic, β-adrenergic, muscarinic, dopamine D2, histamine H1, GABA-benzodiazepine, opiate, 5-HT1, or 5-HT2 receptors. Fluvoxamine is used for management of depression and for Obsessive Compulsive Disorder (OCD). Has also been used in the management of bulimia nervosa. Fluvoxamine is known under the brand names: Faverin, Fevarin, Floxyfral, Dumyrox and Luvox.
Risperidone, a benzisoxazole derivative, is an atypical antipsychotic drug with high affinity for 5-hydrotryptamine (5-HT) and dopamine D2 receptors. It is FDA approved for the treatment of schizophrenia, bipolar mania, irritability associated with autistic disorder. Carbamazepine and other enzyme inducers decrease plasma concentrations of risperidone. Vice versa, Fluoxetine, paroxetine, and other CYP 2D6 enzyme inhibitors increase plasma concentrations of risperidone. Common adverse reactions include increased mortality in elderly patients with dementia-related psychosis, cerebrovascular adverse events, including stroke, in elderly patients with dementia-related psychosis, neuroleptic malignant syndrome, tardive dyskinesia , metabolic Changes (hyperglycemia and diabetes mellitus, dyslipidemia, weight gain), hyperprolactinemia, orthostatic hypotension, leukopenia, neutropenia, agranulocytosis, potential for cognitive and motor impairment, seizures, dysphagia, priapism, disruption of body temperature regulation.
Sumatriptan is a serotonin (5-HT1B/1D) receptor agonist indicated for acute treatment of migraine with or without aura in adults. Sumatriptan is structurally similar to serotonin (5-HT), and is a 5-HT receptor (types 5-HT1D and 5-HT1B) agonist. The specific receptor subtypes it activates are present on the cranial arteries and veins. Acting as an agonist at these receptors, sumatriptan reduces the vascular inflammation associated with migraines. The specific receptor subtype it activates is present in the cranial and basilar arteries. Activation of these receptors causes vasoconstriction of those dilated arteries. Sumatriptan is also shown to decrease the activity of the trigeminal nerve, which presumably accounts for sumatriptan's efficacy in treating cluster headaches. The injectable form of the drug has been shown to abort a cluster headache within 30 minutes in 77% of cases. Sumatriptan is effective for ending or relieving the intensity of migraine and cluster headaches. It is most effective taken early after the start of the pain. Injected sumatriptan is more effective than other formulations. Large doses of sumatriptan can cause sulfhemoglobinemia, a rare condition in which the blood changes from red to greenish-black, due to the integration of sulfur into the hemoglobin molecule. Serious cardiac events, including some that have been fatal, have occurred following the use of sumatriptan injection or tablets. Events reported have included coronary artery vasospasm, transient myocardial ischemia, myocardial infarction, ventricular tachycardia, and ventricular fibrillation (V-Fib).
Paclitaxel is a mitotic inhibitor used in cancer chemotherapy. It was discovered in a US National Cancer Institute program at the Research Triangle Institute in 1967 when Monroe E. Wall and Mansukh C. Wani isolated it from the bark of the Pacific yew tree, Taxus brevifolia and named it taxol. Later it was discovered that endophytic fungi in the bark synthesize paclitaxel. When it was developed commercially by Bristol-Myers Squibb (BMS), the generic name was changed to paclitaxel and the BMS compound is sold under the trademark Taxol. In this formulation, paclitaxel is dissolved in Kolliphor EL and ethanol, as a delivery agent. Taxol is marketed for the treatment of Breast cancer; Gastric cancer; Kaposi's sarcoma; Non-small cell lung cancer; Ovarian cancer. A newer formulation, in which paclitaxel is bound to albumin, is sold under the trademark Abraxane. Paclitaxel is a taxoid antineoplastic agent indicated as first-line and subsequent therapy for the treatment of advanced carcinoma of the ovary, and other various cancers including breast cancer. Paclitaxel is a novel antimicrotubule agent that promotes the assembly of microtubules from tubulin dimers and stabilizes microtubules by preventing depolymerization. This stability results in the inhibition of the normal dynamic reorganization of the microtubule network that is essential for vital interphase and mitotic cellular functions. In addition, paclitaxel induces abnormal arrays or "bundles" of microtubules throughout the cell cycle and multiple asters of microtubules during mitosis. Used in the treatment of Kaposi's sarcoma and cancer of the lung, ovarian, and breast. Abraxane® is specfically indicated for the treatment of metastatic breast cancer and locally advanced or metastatic non-small cell lung cancer. Paclitaxel interferes with the normal function of microtubule growth. Whereas drugs like colchicine cause the depolymerization of microtubules in vivo, paclitaxel arrests their function by having the opposite effect; it hyper-stabilizes their structure. This destroys the cell's ability to use its cytoskeleton in a flexible manner. Specifically, paclitaxel binds to the β subunit of tubulin. Tubulin is the "building block" of mictotubules, and the binding of paclitaxel locks these building blocks in place. The resulting microtubule/paclitaxel complex does not have the ability to disassemble. This adversely affects cell function because the shortening and lengthening of microtubules (termed dynamic instability) is necessary for their function as a transportation highway for the cell. Chromosomes, for example, rely upon this property of microtubules during mitosis. Further research has indicated that paclitaxel induces programmed cell death (apoptosis) in cancer cells by binding to an apoptosis stopping protein called Bcl-2 (B-cell leukemia 2) and thus arresting its function.

Class (Stereo):
CHEMICAL (ACHIRAL)


Conditions:

Zolpidem is usually used for the treatment of insomnia as a hypnotic drug. It was also suggested to be effective in the treatment of dystonia in some studies. Zolpidem can be one of useful alternative pharmacological treatments for blepharospasm. Zolpidem interacts with a GABA-BZ receptor complex and shares some of the pharmacological properties of the benzodiazepines. In contrast to the benzodiazepines, which non-selectively bind to and activate all BZ receptor subtypes, zolpidem in vitro binds the BZ1 receptor preferentially with a high affinity ratio of the α1/α5 subunits. This selective binding of zolpidem on the BZ1 receptor is not absolute, but it may explain the relative absence of myorelaxant and anticonvulsant effects in animal studies as well as the preservation of deep sleep in human studies of zolpidem tartrate at hypnotic doses.
Finasteride is a synthetic 4-azasteroid compound. This drug is a competitive and specific inhibitor of Type II 5a-reductase, an intracellular enzyme that converts the androgen testosterone into 5α-dihydrotestosterone (DHT). Two distinct isozymes are found in mice, rats, monkeys, and humans: Type I and II. Each of these isozymes is differentially expressed in tissues and developmental stages. In humans, Type I 5a-reductase is predominant in the sebaceous glands of most regions of skin, including scalp, and liver. Type I 5a-reductase is responsible for approximately one-third of circulating DHT. The Type II 5a-reductase isozyme is primarily found in prostate, seminal vesicles, epididymides, and hair follicles as well as liver, and is responsible for two-thirds of circulating DHT. Although finasteride is 100-fold more selective for type II 5a-reductase than for the type I isoenzyme, chronic treatment with this drug may have some effect on type I 5a-reductase. Finasteride is used for the treatment of symptomatic benign prostatic hyperplasia (BPH) in men with an enlarged prostate to: Improve symptoms, reduce the risk of acute urinary retention, reduce the risk of the need for surgery including transurethral resection of the prostate. Also used for the stimulation of regrowth of hair in men with mild to moderate androgenetic alopecia (male pattern alopecia, hereditary alopecia, common male baldness). Finasteride is sold under the brand names Proscar and Propecia among others.
Status:
First approved in 1987

Class (Stereo):
CHEMICAL (UNKNOWN)

Targets:


Ifosfamide (IF) is a widely used antitumor prodrug. It is in the oxazaphosphorine class of alkylating agents, and it is effective against solid tumors. Ifosfamide mechanism of crosslinking DNA plays a major role in preventing cancer cells from proliferating. Ifosfamide is approved by FDA for the treatment of germ cell testicular cancer.

Class (Stereo):
CHEMICAL (ABSOLUTE)



Ursodiol tablets, USP are bile acids indicated for the treatment of patients with primary biliary cirrhosis. Ursodiol (Ursodeoxycholic acid), a naturally occurring hydrophilic bile acid, derived from cholesterol, is present as a minor fraction of the total human bile acid pool. Ursodeoxycholic acid reduces elevated liver enzyme levels by facilitating bile flow through the liver and protecting liver cells. The main mechanism if anticholelithic. Although the exact process of ursodiol's anticholelithic action is not completely understood, it is thought that the drug is concentrated in bile and decreases biliary cholesterol by suppressing hepatic synthesis and secretion of cholesterol and by inhibiting its intestinal absorption. The reduced cholesterol saturation permits the gradual solubilization of cholesterol from gallstones, resulting in their eventual dissolution. In addition to the replacement and displacement of toxic bile acids, other mechanisms of action include cytoprotection of the injured bile duct epithelial cells (cholangiocytes) against toxic effects of bile acids, inhibition of apotosis of hepatocytes, immunomodulatory effects, and stimulation of bile secretion by hepatocytes and cholangiocytes. Neither accidental nor intentional overdosing with ursodeoxycholic acid has been reported. Doses of ursodeoxycholic acid in the range of 16-20 mg/kg/day have been tolerated for 6-37 months without symptoms by 7 patients. The LD50 for ursodeoxycholic acid in rats is over 5000 mg/kg given over 7-10 days and over 7500 mg/kg for mice. The most likely manifestation of severe overdose with ursodeoxycholic acid would probably be diarrhea, which should be treated symptomatically.
Status:
First approved in 1987

Class (Stereo):
CHEMICAL (ACHIRAL)



Mesna is an organosulfur compound used as an adjuvant in cancer chemotherapy involving cyclophosphamide and ifosfamide. No clinical drug interaction studies have been conducted with mesna. Mesna concentrates in the bladder where acrolein accumulates after administration of chemotherapy and through a Michael addition, forms a conjugate with acrolein and other urotoxic metabolites. This conjugation reaction inactivates the urotoxic compounds to harmless metabolites. The most common adverse reactions (> 10%) when MESNEX is given with ifosfamide are nausea, vomiting, constipation, leukopenia, fatigue, fever, anorexia, thrombocytopenia, anemia, granulocytopenia, diarrhea, asthenia, abdominal pain, headache, alopecia, and somnolence.