U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 31 - 40 of 166 results

Thiothixene (trade mark Navane) belongs to a class of antipsychotics known as the first-generation antipsychotics, sometimes referred to as conventional or typical antipsychotics. Thiothixene is a thioxanthene antipsychotic which elicits antipsychotic activity by postsynaptic blockade of CNS dopamine receptors resulting in inhibition of dopamine-mediated effects; also has alpha-adrenergic blocking activity. Thiothixene is effective in the management of schizophrenia. Only cis isomer of thiothixene exerts clinical effectivity.
Status:
First approved in 1965

Class (Stereo):
CHEMICAL (RACEMIC)



Oxazepam is the first of a chemical series of compounds, the 3-hydroxybenzodiazepinones. A therapeutic agent providing versatility and flexibility in control of common emotional disturbances, this product exerts prompt action in a wide variety of disorders associated with anxiety, tension, agitation and irritability, and anxiety associated with depression. Oxazepam has distinguished itself clinically from other benzodiazepines by virtue of its excellent tolerance. Because of its excellent tolerance, dosage is very flexible, and it is, therefore, possible to utilize oxazepam in a wide spectrum of anxiety-related disorders including the psychoses. Oxazepam has been administered to humans by the oral route only. Usual ranges for kinetic parameters are: elimination half-life, 5 to 15 hours; volume of distribution, 0.6 to 2.0 L/kg; clearance, 0.9 to 2.0 ml/min/kg. Age and liver disease have a minimal influence on oxazepam kinetics, but renal disease is associated with a prolonged half-life and increased volume of distribution.
Diazepam is a benzodiazepine first discovered at Hoffman-La Roche in the late 1950s. Diazepam was approved by FDA for the treatment of anxiety disorders as well as for such conditions as skeletal muscle spasm, alcohol withdrawal syndrom and convulsions (under the most known brand Valium). The drug acts by binding to GABA-A receptors and potentiating GABA evoked current. Chronic diazepam use is associated with tolerance, dependence, and withdrawal.

Class (Stereo):
CHEMICAL (MIXED)


Conditions:

Methohexital is an ultrashort-acting barbiturate widely used in dentistry because of its rapid onset, predictable effects, and short duration of action. It was marked under the name brevital sodium for the intravenous anaesthesia. It has also been commonly used to induce deep sedation. Like other barbiturates, methohexital exerts its effects through the gamma-aminobutyric acid (GABA) receptor complex. By binding to its own receptor on the complex, methohexital augments the inhibitory effect of GABA on neurons and additionally can exert a similar effect independent of GABA.
Chlordiazepoxide (trade name Librium) is a sedative and hypnotic medication of the benzodiazepine class. Chlordiazepoxide is indicated for the management of anxiety disorders or for the short-term relief of symptoms of anxiety, withdrawal symptoms of acute alcoholism, and preoperative apprehension and anxiety. Anxiety or tension associated with the stress of everyday life usually does not require treatment with an anxiolytic. The effectiveness of Librium in long-term use, that is, more than 4 months, has not been assessed by systematic clinical studies. Chlordiazepoxide acts on benzodiazepine allosteric sites that are part of the GABAA receptor/ion-channel complex and this results in an increased binding of the inhibitory neurotransmitter GABA to the GABAA receptor thereby producing inhibitory effects on the central nervous system and body similar to the effects of other benzodiazepines. Chlordiazepoxide act via micromolar benzodiazepine binding sites as Ca2+ channel blockers and significantly inhibit depolarization-sensitive Calcium uptake in animal nerve terminal preparations. The withdrawal of chlordiazepoxide during pregnancy and breastfeeding is recommended, as chlordiazepoxide rapidly crosses the placenta and also is excreted in breast milk. Chlordiazepoxide is a long-acting benzodiazepine drug. The half-life of Chlordiazepoxide is 5 – 30 hours but has an active benzodiazepine metabolite (desmethyldiazepam), which has a half-life of 36 – 200 hours. The necessity of discontinuing therapy because of undesirable effects has been rare. Drowsiness, ataxia and confusion have been reported in some patients — particularly the elderly and debilitated. While these effects can be avoided in almost all instances by proper dosage adjustment, they have occasionally been observed at the lower dosage ranges. In a few instances syncope has been reported.
Fluphenazine is a trifluoro-methyl phenothiazine derivative intended for the management of schizophrenia and other psychotic disorders. Fluphenazine has not been shown effective in the management of behaviorial complications in patients with mental retardation. Fluphenazine blocks postsynaptic mesolimbic dopaminergic D1 and D2 receptors in the brain; depresses the release of hypothalamic and hypophyseal hormones and is believed to depress the reticular activating system thus affecting basal metabolism, body temperature, wakefulness, vasomotor tone, and emesis.
Trifluoperazine (Eskazinyl, Eskazine, Jatroneural, Modalina, Stelazine, Terfluzine, Trifluoperaz, Triftazin) is a typical antipsychotic of the phenothiazine chemical class used for the short-term treatment of certain types of anxiety. Trifluoperazine blocks postsynaptic mesolimbic dopaminergic D1 and D2 receptors in the brain; depresses the release of hypothalamic and hypophyseal hormones and is believed to depress the reticular activating system thus affecting basal metabolism, body temperature, wakefulness, vasomotor tone, and emesis. The primary application of trifluoperazine is for schizophrenia. Other official indications may vary country by country, but generally, it is also indicated for use in agitation and patients with behavioral problems, severe nausea, and vomiting as well as severe anxiety. Trials have shown a moderate benefit of this drug in patients with borderline personality disorder. A 2004 meta-analysis of the studies on trifluoperazine found that it is more likely than placebo to cause extrapyramidal side effects such as akathisia, dystonia, and Parkinsonism. It is also more likely to cause somnolence and anticholinergic side effects such as red-eye and xerostomia (dry mouth).
Perphenazine is a relatively high potency phenothiazine that blocks dopamine 2 receptors predominantly, but also may possess antagonist actions at histamine 1 and cholinergic M1 and alpha 1 adrenergic receptors in the vomiting center leading to reduced nausea and vomiting. The drug was approved by FDA for the treatment of schizophrenia and control of severe nausea and vomiting (either alone or in combination with amitriptyline hydrochloride). Perphenazine is extensively hepatic to metabolites via sulfoxidation, hydroxylation, dealkylation, and glucuronidation; primarily metabolized by CYP2D6 to N-dealkylated perphenazine, perphenazine sulfoxide, and 7-hydroxyperphenazine (active metabolite with 70% of the activity of perphenazine) and excreted in the urine and feces.
Hydroxyzine, a piperazine antihistamine structurally related to buclizine, cyclizine, and meclizine, is used to treat histamine-mediated pruritus or pruritus due to allergy, nausea and vomiting, and, in combination with an opiate agonist, anxiolytic pain. Hydroxyzine is also used as a perioperative sedative and anxiolytic and to manage acute alcohol withdrawal. Hydroxyzine competes with histamine for binding at H1-receptor sites on the effector cell surface, resulting in suppression of histaminic edema, flare, and pruritus. The sedative properties of hydroxyzine occur at the subcortical level of the CNS. Secondary to its central anticholinergic actions, hydroxyzine may be effective as an antiemetic. It is used for symptomatic relief of anxiety and tension associated with psychoneurosis and as an adjunct in organic disease states in which anxiety is manifested.
Prochlorperazine is a piperazine phenothiazine antipsychotic which block postsynaptic mesolimbic dopaminergic receptors in the brain and has antiemetic effects by its antagonist actions in the D2 dopamine receptors in the chemoreceptor trigger zone. It also exhibits alpha-adrenergic blocking effect on α1 receptros and may depress the release of hypothalamic and hypophyseal hormones. Prochlorperazine is used for the control of severe nausea and vomiting, for the treatment of schizophrenia. Prochlorperazine is effective for the short-term treatment of generalized non-psychotic anxiety. Prochlorperazine may be an effective treatment of acute headaches and refractory chronic daily headache.