U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 31 - 40 of 405 results


Class (Stereo):
CHEMICAL (ABSOLUTE)



Anidulafungin (brand names Eraxis (in U.S. and Russia) and Ecalta (in Europe)) is a semi-synthetic echinocandin with antifungal activity and it is active in vitro against many Candida, as well as some Aspergillus. Like other echinocandins, anidulafungin is not active against Cryptococcus neoformans, Trichosporon, Fusarium, or zygomycetes. This drug is indicated for the treatment of candidemia and the following Candida infections: intra-abdominal abscess and peritonitis; and for the treatment of esophageal candidiasis. Anidulafungin inhibits glucan synthase, an enzyme present in fungal, but not mammalian cells. This results in inhibition of the formation of 1,3--D-glucan, an essential component of the fungal cell wall.
Micafungin (trade name Mycamine) is an echinocandin antifungal drug. Micafungin, the active ingredient in Mycamine, inhibits the synthesis of 1,3-β-D-glucan, an essential component of fungal cell walls, which is not present in mammalian cells. Micafungin is indicated for the treatment of candidemia, acute disseminated candidiasis, Candida peritonitis, abscesses and esophageal candidiasis. Possible histamine-mediated symptoms have been reported with Mycamine, including rash, pruritus, facial swelling and vasodilatation.
Tigecycline (INN) is an antibiotic used to treat a number of bacterial infections. It is a first in class glycylcycline that is administered intravenously. For the treatment of infections caused by susceptible strains of the designated microorganisms in the following conditions: Complicated skin and skin structure infections caused by Escherichia coli, Enterococcus faecalis (vancomycin-susceptible isolates only), Staphylococcus aureus (methicillin-susceptible and -resistant isolates), Streptococcus agalactiae, Streptococcus anginosus grp. (includes S. anginosus, S. intermedius, and S. constellatus), Streptococcus pyogenes and Bacteroides fragilis. Complicated intra-abdominal infections caused by Citrobacter freundii, Enterobacter cloacae, Escherichia coli, Klebsiella oxytoca, Klebsiella pneumoniae, Enterococcus faecalis (vancomycin-susceptible isolates only), Staphylococcus aureus (methicillin-susceptible isolates only), Streptococcus anginosus grp. (includes S. anginosus, S. intermedius, and S. constellatus), Bacteroides fragilis, Bacteroides thetaiotaomicron, Bacteroides uniformis, Bacteroides vulgatus, Clostridium perfringens, and Peptostreptococcus micros. Tigecycline, a glycylcycline, inhibits protein translation in bacteria by binding to the 30S ribosomal subunit and blocking entry of amino-acyl tRNA molecules into the A site of the ribosome. This prevents incorporation of amino acid residues into elongating peptide chains. Tigecycline carries a glycylamido moiety attached to the 9-position of minocycline. The substitution pattern is not present in any naturally occurring or semisynthetic tetracycline and imparts certain microbiologic properties to tigecycline. In general, tigecycline is considered bacteriostatic; however, TYGACIL has demonstrated bactericidal activity against isolates of S. pneumoniae and L. pneumophila. In vitro studies have not demonstrated antagonism between tigecycline and other commonly used antibacterials.
Tipranavir (PNU-140690, trade mark APTIVUS) is a potent, orally bioavailable nonpeptidic HIV protease inhibitor of the 5,6-dihydro-4-hydroxy-2-pyrone sulfonamide class. Tipranavir has potent in vitro activity against a variety of HIV-1 laboratory strains and clinical isolates, including those resistant to ritonavir, as well as HIV-2. The drug is launched in several countries, including the US and in the EU. APTIVUS, co-administered with ritonavir, is indicated for combination antiretroviral treatment of HIV-1 infected patients who are treatment-experienced and infected with HIV-1 strains resistant to more than one protease inhibitor.

Class (Stereo):
CHEMICAL (ABSOLUTE)

Targets:

Conditions:

BARACLUDE® is the tradename for entecavir, a guanosine nucleoside analogue with selective activity against hepatitis B virus (HBV). It inhibits all three steps in the viral replication process. By competing with the natural substrate deoxyguanosine triphosphate, entecavir functionally inhibits all three activities of the HBV polymerase (reverse transcriptase, rt): (1) base priming, (2) reverse transcription of the negative strand from the pregenomic messenger RNA, and (3) synthesis of the positive strand of HBV DNA. Upon activation by kinases, the drug can be incorporated into the DNA which has the ultimate effect of inhibiting the HBV polymerase activity. Entecavir is used for the treatment of chronic hepatitis B virus infection in adults with evidence of active viral replication and either evidence of persistent elevations in serum aminotransferases (ALT or AST) or histologically active disease.

Class (Stereo):
CHEMICAL (ACHIRAL)

Targets:


Tinidazole is a synthetic antiprotozoal agent, formally known as 1-[2-(ethylsulfonyl)ethyl]-2-methyl-5-nitroimidazole and a second-generation 2-methyl-5-nitroimidazole. Tinidazole is a prodrug and antiprotozoal agent. The nitro group of tinidazole is reduced in Trichomonas by a ferredoxin-mediated electron transport system. The free nitro radical generated as a result of this reduction is believed to be responsible for the antiprotozoal activity. It is suggested that the toxic free radicals covalently bind to DNA, causing DNA damage and leading to cell death. The mechanism by which tinidazole exhibits activity against Giardia and Entamoeba species is not known. Tindamax oral tablets are indicated for the treatment of trichomoniasis caused by T. vaginalis in both female and male patients assuming the organism has been identified by appropriate diagnostic procedures. Because trichomoniasis is a sexually transmitted disease with potentially serious sequelae, partners of infected patients should be treated simultaneously in order to prevent re-infection. Tindamax oral tablets are also indicated for the treatment of giardiasis caused by G. duodenalis (also termed G. lamblia) in both adults and pediatric patients older than three years of age. Another indication for Tindamax oral tablets is the treatment of intestinal amebiasis and amebic liver abscess caused by E. histolytica in both adults and pediatric patients older than three years of age. It is not indicated in the treatment of asymptomatic cyst passage. The most common side effects reported with tinidazole are upset stomach, bitter taste and itchiness. Other side effects include headache, physical fatigue, and dizziness. Anecdotally, people who have taken both metronidazole and tinidazole report toxicity is much the same except the side effects don't last as long with the latter. Drinking alcohol while taking tinidazole causes an unpleasant disulfiram-like reaction which includes nausea, vomiting, headache, increased blood pressure, flushing, and shortness of breath.
Daptomycin is a lipopeptide antibiotic used in the treatment of systemic and life-threatening infections caused by Gram-positive organisms. Daptomycin has a distinct mechanism of action, disrupting multiple aspects of bacterial cell membrane function. It inserts into the cell membrane in a phosphatidylglycerol-dependent fashion, where it then aggregates. The aggregation of daptomycin alters the curvature of the membrane, which creates holes that leak ions. This causes rapid depolarization, resulting in a loss of membrane potential leading to inhibition of protein, DNA, and RNA synthesis, which results in bacterial cell death. Daptomycin is bactericidal against Gram-positive bacteria only. It has proven in vitro activity against enterococci (including glycopeptide-resistant enterococci (GRE)), staphylococci (including methicillin-resistant Staphylococcus aureus), streptococci, corynebacteria and stationary-phase Borrelia burgdorferi persisters.
Atazanavir is the first once-daily protease inhibitor for the treatment of human immunodeficiency virus type 1 infection and should be used only in combination therapy, as part of a highly active antiretroviral therapy (HAART) regimen. In addition to being the most potent protease inhibitor in vitro, atazanavir has a distinct cross-resistance profile that does not confer resistance to other protease inhibitors. However, resistance to other protease inhibitors often confers clinically relevant resistance to atazanavir.
Emtricitabine was discovered by Emory researchers Dr. Dennis C. Liotta, Dr. Raymond F. Schinazi and Dr. Woo-Baeg Choi and licensed to Triangle Pharmaceuticals by Emory University in 1996. Triangle was acquired by Gilead in 2003. Emtricitabine, marketed by Gilead as Emtriva, was first approved by the U.S. Food and Drug Administration in July 2003 for the treatment of HIV infection in combination with other antiretroviral agents. Emtricitabine, a synthetic nucleoside analog of cytidine, is phosphorylated by cellular enzymes to form emtricitabine 5'-triphosphate. Emtricitabine 5'-triphosphate inhibits the activity of the HIV-1 reverse transcriptase by competing with the natural substrate deoxycytidine 5'-triphosphate and by being incorporated into nascent viral DNA which results in chain termination.
Voriconazole (vor-i-KON-a-zole, brand name Vfend, Pfizer) is a triazole antifungal medication. VFEND® (voriconazole) is available as film-coated tablets for oral administration, and as a lyophilized powder for solution for intravenous infusion. Voriconazole is a triazole antifungal agent indicated for use in the treatment of fungal infections including invasive aspergillosis, esophageal candidiasis, and serious fungal infections caused by Scedosporium apiospermum (asexual form of Pseudallescheria boydii) and Fusarium spp. including Fusarium solani. Fungal plasma membranes are similar to mammalian plasma membranes, differing in having the nonpolar sterol ergosterol, rather than cholesterol, as the principal sterol. Membrane sterols such as ergosterol provide structure, modulation of membrane fluidity, and possibly control of some physiologic events. Voriconazole effects the formation of the fungal plasma membrane by indirectly inhibiting the biosynthesis of ergosterol. This results in plasma membrane permeability changes and inhibition of growth. The primary mode of action of voriconazole is the inhibition of fungal cytochrome P-450-mediated 14 alpha-lanosterol demethylation, an essential step in fungal ergosterol biosynthesis. The accumulation of 14 alpha-methyl sterols correlates with the subsequent loss of ergosterol in the fungal cell wall and may be responsible for the antifungal activity of voriconazole. Voriconazole has been shown to be more selective for fungal cytochrome P-450 enzymes than for various mammalian cytochrome P-450 enzyme systems. The most common side effects associated with voriconazole include transient visual disturbances, fever, rash, vomiting, nausea, diarrhea, headache, sepsis, peripheral edema, abdominal pain, and respiratory disorder. Unlike most adverse effects, which are similar to other azole antifungal agents, visual disturbances (such as blurred vision or increased sensitivity to light) are unique to voriconazole. Though rare, there have been cases of serious hepatic reactions during treatment with voriconazole (a class effect of azole antifungal agents). Liver function tests should be evaluated at the start of and during the course of therapy. Voriconazole is phototoxic. It has been associated with an increased risk of squamous-cell carcinoma of the skin