{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Restrict the search for
nalidixic acid
to a specific field?
Status:
US Previously Marketed
First approved in 1951
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Evans Blue (EBD) is an azo dye which has a very high affinity for serum albumin. It can be useful in physiology in estimating the proportion of body water contained in blood plasma. Evans Blue Dye is widely used to study blood vessel and cellular membrane permeability as it is non-toxic, it can be administered as an intravital dye and it binds to serum albumin – using this as its transporter molecule. The EBD–albumin conjugate (EBA) can be: (i) identified macroscopically by the striking blue colour within tissue; (ii) observed by red auto-fluorescence in tissue sections examined by fluorescence microscopy; and (iii) assessed and quantified by spectrophotometry for serum samples, or homogenised tissue. has recently been utilised in mdx mice to identify permeable skeletal myofibres that have become damaged as a result of muscular dystrophy. EBD has the potential to be a useful vital stain of myofibre permeability in other models of skeletal muscle injury and membrane-associated fragility. Evans Blue is a potent inhibitor of L-glutamate uptake into synaptic vesicles. It also inhibits AMPA and kainate receptor-mediated currents (IC50 values are 220 and 150 nM respectively). P2X-selective purinoceptor antagonist.
Status:
US Previously Marketed
First approved in 1951
Class (Stereo):
CHEMICAL (MIXED)
Status:
US Previously Marketed
Source:
PIPERAZINE CITRATE by LUITPOLD
(1982)
Source URL:
First approved in 1950
Source:
PIG SWIGFOR SWINE AND POULTRY by LeGear Animal Health
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Piperazine, a six membered nitrogen containing heterocycle, is of great significance to the rational design of drugs. This moiety can be found in a plethora of well-known drugs with various therapeutic uses, such as antipsychotic, antihistamine, antianginal, antidepressant, anticancer, antiviral, cardio protectors, anti-inflammatory, and imaging agents. Slight modification to the substitution pattern on the piperazine nucleus facilitates a recognizable difference in the medicinal potential of the resultant molecules. Piperazine has been used as an antihelmintic drug. Piperazine works by paralyzing the worms. They are then passed in the stool.
Status:
US Previously Marketed
First approved in 1950
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
ALMECILLIN (also known as penicillin O) is an antibiotic that can be safely substituted for penicillin G in instances of hypersensitivity reactions to the latter.
Status:
US Previously Marketed
Source:
PIPERAZINE CITRATE by LUITPOLD
(1982)
Source URL:
First approved in 1950
Source:
PIG SWIGFOR SWINE AND POULTRY by LeGear Animal Health
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Piperazine, a six membered nitrogen containing heterocycle, is of great significance to the rational design of drugs. This moiety can be found in a plethora of well-known drugs with various therapeutic uses, such as antipsychotic, antihistamine, antianginal, antidepressant, anticancer, antiviral, cardio protectors, anti-inflammatory, and imaging agents. Slight modification to the substitution pattern on the piperazine nucleus facilitates a recognizable difference in the medicinal potential of the resultant molecules. Piperazine has been used as an antihelmintic drug. Piperazine works by paralyzing the worms. They are then passed in the stool.
Status:
US Previously Marketed
Source:
PIPERAZINE CITRATE by LUITPOLD
(1982)
Source URL:
First approved in 1950
Source:
PIG SWIGFOR SWINE AND POULTRY by LeGear Animal Health
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Piperazine, a six membered nitrogen containing heterocycle, is of great significance to the rational design of drugs. This moiety can be found in a plethora of well-known drugs with various therapeutic uses, such as antipsychotic, antihistamine, antianginal, antidepressant, anticancer, antiviral, cardio protectors, anti-inflammatory, and imaging agents. Slight modification to the substitution pattern on the piperazine nucleus facilitates a recognizable difference in the medicinal potential of the resultant molecules. Piperazine has been used as an antihelmintic drug. Piperazine works by paralyzing the worms. They are then passed in the stool.
Status:
US Previously Marketed
Source:
CHLOROMYCETIN HYDROCORTISONE by PARKEDALE
(1953)
Source URL:
First approved in 1950
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Chloramphenicol is a broad-spectrum antibiotic that was first isolated from
Streptomyces venezuelae in 1947. The drug was subsequently chemically synthesized. It has both a bacteriostatic and bactericidal effect; in the usual therapeutic concentrations it is bacteriostatic. Chloramphenicol is used for the treatment of serious gram-negative, gram-positive, and anaerobic infections. It is especially useful in the treatment of meningitis, typhoid fever, and cystic fibrosis. It should be reserved for infections for which other drugs are ineffective or contraindicated. Chloramphenicol, a small inhibitor of bacterial protein synthesis, is active against a variety of bacteria and readily enters the CSF. It has been used extensively in the last decades for the treatment of bacterial meningitis. In industrialized countries, chloramphenicol is restricted mostly to topical uses because of the risk of induction of aplastic anemia. However, it remains a valuable reserve antibiotic for patients with allergy to β-lactam antibiotics or with CNS infections caused by multiresistant pathogens.
Status:
US Previously Marketed
Source:
CHLOROMYCETIN HYDROCORTISONE by PARKEDALE
(1953)
Source URL:
First approved in 1950
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Chloramphenicol is a broad-spectrum antibiotic that was first isolated from
Streptomyces venezuelae in 1947. The drug was subsequently chemically synthesized. It has both a bacteriostatic and bactericidal effect; in the usual therapeutic concentrations it is bacteriostatic. Chloramphenicol is used for the treatment of serious gram-negative, gram-positive, and anaerobic infections. It is especially useful in the treatment of meningitis, typhoid fever, and cystic fibrosis. It should be reserved for infections for which other drugs are ineffective or contraindicated. Chloramphenicol, a small inhibitor of bacterial protein synthesis, is active against a variety of bacteria and readily enters the CSF. It has been used extensively in the last decades for the treatment of bacterial meningitis. In industrialized countries, chloramphenicol is restricted mostly to topical uses because of the risk of induction of aplastic anemia. However, it remains a valuable reserve antibiotic for patients with allergy to β-lactam antibiotics or with CNS infections caused by multiresistant pathogens.
Status:
US Previously Marketed
Source:
HETRAZAN by LEDERLE
(1950)
Source URL:
First approved in 1950
Source:
HETRAZAN by LEDERLE
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Diethylcarbamazine is used in humans, dogs and cats for the treatment of parasitic infections, including pulmonary eosinophilia, loiasis, and lymphatic filariasis. The exact mechanism of its action is unknown, however some studies showed the involvment of inducible nitric-oxide synthase and the cyclooxygenase pathway. Although there is no information on whether the drug is marketed in the USA and Europe, it is currently used in India.
Status:
US Previously Marketed
Source:
CHLOROMYCETIN HYDROCORTISONE by PARKEDALE
(1953)
Source URL:
First approved in 1950
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Chloramphenicol is a broad-spectrum antibiotic that was first isolated from
Streptomyces venezuelae in 1947. The drug was subsequently chemically synthesized. It has both a bacteriostatic and bactericidal effect; in the usual therapeutic concentrations it is bacteriostatic. Chloramphenicol is used for the treatment of serious gram-negative, gram-positive, and anaerobic infections. It is especially useful in the treatment of meningitis, typhoid fever, and cystic fibrosis. It should be reserved for infections for which other drugs are ineffective or contraindicated. Chloramphenicol, a small inhibitor of bacterial protein synthesis, is active against a variety of bacteria and readily enters the CSF. It has been used extensively in the last decades for the treatment of bacterial meningitis. In industrialized countries, chloramphenicol is restricted mostly to topical uses because of the risk of induction of aplastic anemia. However, it remains a valuable reserve antibiotic for patients with allergy to β-lactam antibiotics or with CNS infections caused by multiresistant pathogens.