U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 311 - 320 of 39119 results

Raloxifene (marketed as Evista by Eli Lilly and Company) is an oral selective estrogen receptor modulator (SERM) that has estrogenic actions on bone and anti-estrogenic actions on the uterus and breast. Raloxifene binds to estrogen receptors, resulting in differential expression of multiple estrogen-regulated genes in different tissues. Raloxifene produces estrogen-like effects on bone, reducing resorption of bone and increasing bone mineral density in postmenopausal women, thus slowing the rate of bone loss. The maintenance of bone mass by raloxifene and estrogens is, in part, through the regulation of the gene-encoding transforming growth factor-β3 (TGF-β3), which is a bone matrix protein with antiosteoclastic properties. Raloxifene activates TGF-β3 through pathways that are estrogen receptor-mediated but involve DNA sequences distinct from the estrogen response element. The drug also binds to the estrogen receptor and acts as an estrogen agonist in preosteoclastic cells, which results in the inhibition of their proliferative capacity. This inhibition is thought to contribute to the drug's effect on bone resorption. Other mechanisms include the suppression of the activity of the bone-resorbing cytokine interleukin-6 promoter activity. Raloxifene also antagonizes the effects of estrogen on mammary tissue and blocks uterotrophic responses to estrogen. By competing with estrogens for the estrogen receptors in reproductive tissue, raloxifene prevents the transcriptional activation of genes containing the estrogen response element. As well, raloxifene inhibits the estradiol-dependent proliferation of MCF-7 human mammary tumor cells in vitro. The mechanism of action of raloxifene has not been fully determined, but evidence suggests that the drug's tissue-specific estrogen agonist or antagonist activity is related to the structural differences between the raloxifene-estrogen receptor complex (specifically the surface topography of AF-2) and the estrogen-estrogen receptor complex. Also, the existence of at least 2 estrogen receptors (ERα, ERβ) may contribute to the tissue specificity of raloxifene. Raloxifene is indicated for the treatment and prevention of osteoporosis in postmenopausal women. It is also used for reduction of risk and treatment of invasive breast cancer, and it also reduces breast density. For either osteoporosis treatment or prevention, supplemental calcium and/or vitamin D should be added to the diet if daily intake is inadequate. Common adverse events considered to be drug-related were hot flashes and leg cramps.
Dolasetron is an antinauseant and antiemetic agent, which is approved as a mesylate salt under the brand name anzement for the prevention of nausea and vomiting associated with moderately emetogenic cancer chemotherapy, including initial and repeat courses; and for the prevention of postoperative nausea and vomiting. Dolasetron is a highly specific and selective serotonin 5-HT3 receptor antagonist. The serotonin 5-HT3 receptors are located on the nerve terminals of the vagus in the periphery and centrally in the chemoreceptor trigger zone of the area postrema. It is thought that chemotherapeutic agents produce nausea and vomiting by releasing serotonin from the enterochromaffin cells of the small intestine, and that the released serotonin then activates 5-HT3 receptors located on vagal efferents to initiate the vomiting reflex. This drug is not shown to have activity at other known serotonin receptors, and has low affinity for dopamine receptors. Dolasetron mesilate is rapidly reduced by carbonyl reductase to form its major pharmacologically active metabolite reduced dolasetron. In addition dolasetron was in the phase III clinical trials for the investigation, that intravenous using of dolasetron mesilate reduces pain intensity in patients with fibromyalgia.
Status:
First approved in 1997

Class (Stereo):
CHEMICAL (ACHIRAL)



Fomepizole (4-methylpyrazole) is a competitive ADH inhibitor. Fomepizole has been shown in vitro to block alcohol dehydrogenase enzyme activity in dog, monkey and human liver. Fomepizole is indicated as an antidote for ethylene glycol (such as antifreeze) or methanol poisoning, or for use in suspected ethylene glycol or methanol ingestion, either alone or in combination with hemodialysis. It should be given when a known or suspected toxic ethylene glycol or methanol ingestion has occurred and the patient has metabolic acidosis and elevated osmolar gap. The most frequent adverse events reported as drug-related or unknown relationship were headache (14%), nausea (11%), and dizziness, increased drowsiness, and bad taste/metallic taste. Reciprocal interactions may occur with concomitant use of fomepizole and drugs that increase or inhibit the cytochrome P450 system (e.g. phenytoin, carbamazepine, cimetidine, ketoconazole). Fomepizole has been shown to induce the expression of CYP2E1 and to inhibit its activity. These effects were enhanced in rats that had been exposed to ethanol. Fomepizole may also inhibit other CYP enzymes and therefore may alter the exposure to other drugs that are metabolised by CYP enzymes.
Bromfenac is a topical, nonsteroidal anti-inflammatory drug (NSAID) for ophthalmic use. It is indicated for the treatment of postoperative inflammation and reduction of ocular pain in patients who have undergone cataract surgery. The mechanism of its action is thought to be due to its ability to block prostaglandin synthesis by inhibiting cyclooxygenase 1 and 2. The most commonly reported adverse reactions in 3 to 8% of patients were anterior chamber inflammation, foreign body sensation, eye pain, photophobia and vision blurred.

Class (Stereo):
CHEMICAL (ACHIRAL)


Conditions:

Zafirlukast is an oral leukotriene receptor antagonist (LTRA) for the maintenance treatment of asthma, often used in conjunction with an inhaled steroid and/or long-acting bronchodilator. It is available as a tablet and is usually dosed twice daily. Zafirlukast is indicated for the prophylaxis and chronic treatment of asthma. Patients with asthma were found in one study to be 25-100 times more sensitive to the bronchoconstricting activity of inhaled LTD4 than nonasthmatic subjects. In vitro studies demonstrated that zafirlukast antagonized the contractile activity of three leukotrienes (LTC4, LTD4 and LTE4) in conducting airway smooth muscle from laboratory animals and humans. Zafirlukast prevented intradermal LTD4-induced increases in cutaneous vascular permeability and inhibited inhaled LTD4-induced influx of eosinophils into animal lungs. Zafirlukast is a selective and competitive receptor antagonist of leukotriene D4 and E4 (LTD4 and LTE4), components of slow-reacting substance of anaphylaxis (SRSA). Cysteinyl leukotriene production and receptor occupation have been correlated with the pathophysiology of asthma, including airway edema, smooth muscle constriction, and altered cellular activity associated with the inflammatory process, which contribute to the signs and symptoms of asthma. Zafirlukast is marketed by Astra Zeneca with the brand names Accolate, Accoleit, and Vanticon. It was the first LTRA to be marketed in the USA and is now approved in over 60 countries, including the UK, Japan, Taiwan, Italy, Spain, Canada, Brazil, China and Turkey.

Class (Stereo):
CHEMICAL (ABSOLUTE)



Atorvastatin calcium (LIPITOR®) is a pyrrole and heptanoic acid derivative, a synthetic lipid-lowering agent. Atorvastatin is a selective, competitive inhibitor of 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase. This enzyme catalyzes the conversion of HMG-CoA to mevalonate, an early and rate-limiting step in cholesterol biosynthesis. Atorvastatin is used to reduce serum levels of LDL(low-density lipoprotein)-cholesterol; apolipoprotein B; and triglycerides and to increase serum levels of HDL(high-density lipoprotein)-cholesterol in the treatment of hyperlipidemias and prevention of cardiovascular disease in patients with multiple risk factors.
Mirtazapine, originally known as ORG 3770, was first synthesized by the Department of Medicinal Chemistry of NV Organon in the Netherlands (Kaspersen et al. 1989). First approved for use in major depression in the Netherlands in 1994, mirtazapine was introduced in the United States in 1996. The antidepressant mirtazapine has a dual mode of action. It is a noradrenergic and specific serotonergic antidepressant (NaSSA) that acts by antagonizing the adrenergic alpha2-autoreceptors and alpha2-heteroreceptors as well as by blocking 5-HT2 and 5-HT3 receptors. It enhances, therefore, the release of norepinephrine and 5-HT1A-mediated serotonergic transmission. This dual mode of action may conceivably be responsible for mirtazapine's rapid onset of action.

Class (Stereo):
CHEMICAL (ACHIRAL)


Conditions:

Remifentanil (marketed by Abbott as Ultiva) is a potent ultra short-acting synthetic opioid analgesic drug. It is given to patients during surgery to relieve pain and as an adjunct to an anaesthetic. ULTIVA is a µ-opioid agonist with rapid onset and peak effect, and short duration of action. The µ-opioid activity of ULTIVA is antagonized by opioid antagonists such as naloxone. ULTIVA is indicated for IV administration: 1. As an analgesic agent for use during the induction and maintenance of general anesthesia for inpatient and outpatient procedures. 2. For continuation as an analgesic into the immediate postoperative period in adult patients under the direct supervision of an anesthesia practitioner in a postoperative anesthesia care unit or intensive care setting. 3. As an analgesic component of monitored anesthesia care in adult patients.
Status:
First approved in 1996

Class (Stereo):
CHEMICAL (RACEMIC)



Fexofenadine is a second-generation, long lasting H1-receptor antagonist (antihistamine) which has a selective and peripheral H1-antagonist action. Histamine is a chemical that causes many of the signs that are part of allergic reactions, such as the swelling of tissues. Histamine is released from histamine-storing cells (mast cells) and attaches to other cells that have receptors for histamine. The attachment of the histamine to the receptors causes the cell to be "activated," releasing other chemicals which produce the effects that we associate with allergy. Fexofenadine blocks one type of receptor for histamine (the H1 receptor) and thus prevents activation of cells by histamine. Unlike most other antihistamines, Fexofenadine does not enter the brain from the blood and, therefore, does not cause drowsiness. Fexofenadine lacks the cardiotoxic potential of terfenadine, since it does not block the potassium channel involved in repolarization of cardiac cells. Fexofenadine is sold under the trade name Allegra among others. ALLEGRA is indicated for the relief of symptoms associated with seasonal allergic rhinitis in adults and children 2 years of age and older.
Ropivacaine is a member of the amino amide class of local anesthetics and is supplied as the pure S-(-)-enantiomer. It produces effects similar to other local anesthetics via reversible inhibition of sodium ion influx in nerve fibers. Ropivacaine is less lipophilic than bupivacaine and is less likely to penetrate large myelinated motor fibers, resulting in a relatively reduced motor blockade. Thus, ropivacaine has a greater degree of motor-sensory differentiation, which could be useful when the motor blockade is undesirable. The reduced lipophilicity is also associated with decreased potential for central nervous system toxicity and cardiotoxicity. Ropivacaine is indicated for the production of local or regional anesthesia for surgery and for acute pain management.