{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Search results for dopamine in Relationship Comments (approximate match)
Status:
US Approved Rx
(2017)
Source:
NDA209241
(2017)
Source URL:
First approved in 2017
Source:
NDA209241
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
(+)-alpha-Dihydrotetrabenazine (HTBZ) is an active component of tetrabenazine. Tetrabenazine is a mixture of closely-related compounds (isomers) and is readily metabolized in the human body to HTBZ and related isomers. Tetrabenazine is a drug for the symptomatic treatment of hyperkinetic movement disorder and is marketed under the trade names Nitoman in Canada and Xenazine in New Zealand and some parts of Europe, and is also available in the USA as an orphan drug. (+)-alpha-Dihydrotetrabenazine
and related benzo[a]quinolizines have been labeled with tritium and carbon-11 radioisotopes and used for in vitro and in vivo studies of the VMAT2 in animal and human brain. Adeptio Pharmaceuticals is developing alpha-dihydrotetrabenazine (HTBZ) for the treatment of neurological disorders. It acts by inhibiting vesicular monoamine transporter 2 (VMAT2), thereby blocking the transport of dopamine into axon terminals or into storage vesicles.
Status:
US Approved Rx
(2011)
Source:
ANDA091680
(2011)
Source URL:
First approved in 1959
Source:
TEPANIL by 3M
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
Conditions:
Diethylpropion is a sympathomimetic stimulant drug marketed as an appetite suppressant. Chemically, it is the N,N-diethyl analog of cathinone. Its mechanism of action is similar to other appetite suppressants such as sibutramine, phentermine and dextroamphetamine. Diethylpropion is an amphetamine that stimulates neurons to release or maintain high levels of a particular group of neurotransmitters known as catecholamines; these include dopamine and norepinephrine. High levels of these catecholamines tend to suppress hunger signals and appetite. Diethylpropion (through catecholamine elevation) may also indirectly affect leptin levels in the brain. It is theorized that diethylpropion can raise levels of leptin which signal satiety. It is also theorized that increased levels of the catecholamines are partially responsible for halting another chemical messenger known as neuropeptide Y. This peptide initiates eating, decreases energy expenditure, and increases fat storage. It is used in the management of exogenous obesity as a short-term adjunct (a few weeks) in a regimen of weight reduction based on caloric restriction.
Status:
Possibly Marketed Outside US
Source:
NCT02020408: Phase 4 Interventional Completed Eating Disorder
(2011)
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Raclopride is a salicylamide neuroleptic, that acts as a selective antagonist of D2 dopamine receptors both in vitro and in vivo. Tritium-labelled raclopride has properties that demonstrate its usefulness as a radioligand for the labelling of dopamine-D2 receptors : 3H-Raclopride has a high affinity for the rat and human dopamine-D2 receptors, the non-specific binding of 3H-raclopride is very low, not exceeding 5% of the total binding and the distribution of the 3H-raclopride binding sites in the brain closely correlates with the dopaminergic innervation. The binding of 3H-raclopride is blocked by dopamine-D2 agonists and antagonists, while the D1 agonist SKF 38393 and the Dl antagonist SCH 23390 have much less potency. The interaction of dopamine with 3H-raclopride binding results in a shallow competition curve, which suggests that 3H-raclopride, similar to other dopamine-D2 radioligands, labels both high and low agonist affinity states of the dopamine-D2 receptor. The in vivo receptor binding studies performed with 3H-raclopride also demonstrate its favorable properties as a dopamine-D2 receptor marker in vivo In contrast to some other compounds used as radioligands, raclopride enters the brain readily and binds with a low component of non-specific binding in all dopamine-rich brain areas. A saturation curve may be achieved in vivo binding studies since injections of increasing concentrations of 3H-raclopride appears to be saturated at concentrations above 25 mkCi (corresponding to approximately 5 nmol/kg). Raclopride antagonizes apomorphine-induced hyperactivity in the rat at low doses (ED50 = 130 nM/kg i.p.) but induces catalepsy only at much higher doses (ED50 = 27 mkM/kg i.p.). Radiolabelled raclopride has been used as a ligand for in vitro and in vivo autoradiography in rat and primate brains. Raclopride C 11 is used with positron emission tomography (PET) as a clinical research tool to determine dopamine type 2 (D 2) receptor density in the human brain under normal and pathological conditions. For example, raclopride C 11 used in PET studies has served to confirm the age-related decrease in striatal dopamine D2 receptor density, which may be associated with a decline in the motor as well as cognitive functions. In patients with Alzheimer's disease, raclopride C 11 may be used to examine neuroreceptor distribution and quantities, which may help in the analysis of degenerative alterations of neuron populations and neuroreceptor systems in patients with this disease. In Huntington's disease, in which degeneration of neostriatal interneurons occurs (postsynaptic to the dopaminergic input), specific binding of raclopride C 11 to D 2 receptors may serve as one of the parameters in predicting performance in cognitive tasks.