U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

Details

Stereochemistry ABSOLUTE
Molecular Formula C15H20Cl2N2O3
Molecular Weight 346.238
Optical Activity UNSPECIFIED
Defined Stereocenters 1 / 1
E/Z Centers 0
Charge 0

SHOW SMILES / InChI
Structure of RACLOPRIDE C-11

SMILES

CCN1CCC[C@H]1CNC(=O)C2=C(O[11CH3])C(Cl)=CC(Cl)=C2O

InChI

InChIKey=WAOQONBSWFLFPE-TXWZUYSVSA-N
InChI=1S/C15H20Cl2N2O3/c1-3-19-6-4-5-9(19)8-18-15(21)12-13(20)10(16)7-11(17)14(12)22-2/h7,9,20H,3-6,8H2,1-2H3,(H,18,21)/t9-/m0/s1/i2-1

HIDE SMILES / InChI

Molecular Formula C15H20Cl2N2O3
Molecular Weight 346.238
Charge 0
Count
MOL RATIO 1 MOL RATIO (average)
Stereochemistry ABSOLUTE
Additional Stereochemistry No
Defined Stereocenters 1 / 1
E/Z Centers 0
Optical Activity UNSPECIFIED

Description

Raclopride is a salicylamide neuroleptic, that acts as a selective antagonist of D2 dopamine receptors both in vitro and in vivo. Tritium-labelled raclopride has properties that demonstrate its usefulness as a radioligand for the labelling of dopamine-D2 receptors : 3H-Raclopride has a high affinity for the rat and human dopamine-D2 receptors, the non-specific binding of 3H-raclopride is very low, not exceeding 5% of the total binding and the distribution of the 3H-raclopride binding sites in the brain closely correlates with the dopaminergic innervation. The binding of 3H-raclopride is blocked by dopamine-D2 agonists and antagonists, while the D1 agonist SKF 38393 and the Dl antagonist SCH 23390 have much less potency. The interaction of dopamine with 3H-raclopride binding results in a shallow competition curve, which suggests that 3H-raclopride, similar to other dopamine-D2 radioligands, labels both high and low agonist affinity states of the dopamine-D2 receptor. The in vivo receptor binding studies performed with 3H-raclopride also demonstrate its favorable properties as a dopamine-D2 receptor marker in vivo In contrast to some other compounds used as radioligands, raclopride enters the brain readily and binds with a low component of non-specific binding in all dopamine-rich brain areas. A saturation curve may be achieved in vivo binding studies since injections of increasing concentrations of 3H-raclopride appears to be saturated at concentrations above 25 mkCi (corresponding to approximately 5 nmol/kg). Raclopride antagonizes apomorphine-induced hyperactivity in the rat at low doses (ED50 = 130 nM/kg i.p.) but induces catalepsy only at much higher doses (ED50 = 27 mkM/kg i.p.). Radiolabelled raclopride has been used as a ligand for in vitro and in vivo autoradiography in rat and primate brains. Raclopride C 11 is used with positron emission tomography (PET) as a clinical research tool to determine dopamine type 2 (D 2) receptor density in the human brain under normal and pathological conditions. For example, raclopride C 11 used in PET studies has served to confirm the age-related decrease in striatal dopamine D2 receptor density, which may be associated with a decline in the motor as well as cognitive functions. In patients with Alzheimer's disease, raclopride C 11 may be used to examine neuroreceptor distribution and quantities, which may help in the analysis of degenerative alterations of neuron populations and neuroreceptor systems in patients with this disease. In Huntington's disease, in which degeneration of neostriatal interneurons occurs (postsynaptic to the dopaminergic input), specific binding of raclopride C 11 to D 2 receptors may serve as one of the parameters in predicting performance in cognitive tasks.

CNS Activity

Originator

Approval Year

Targets

Primary TargetPharmacologyConditionPotency
12.7 nM [Ki]
13.4 nM [Ki]
3100.0 nM [Ki]
8.7 nM [Ki]

Conditions

ConditionModalityTargetsHighest PhaseProduct
Diagnostic
Unknown
Diagnostic
Unknown
Diagnostic
Unknown
Diagnostic
Unknown

PubMed

Sample Use Guides

In Vivo Use Guide
3.3 MBq/kg
Route of Administration: Intravenous
In Vitro Use Guide
Primary cultures of rat neonatal ventricular cardiac myocytes were prepared by enzymatic digestion of ventricle tissue with 0.25% trypsin. The cardiomyocytes were first plated for 2 h to reduce non-myocyte contamination. The cells were then washed to remove erythrocytes, replated at a density of 2.0x10^6 cells in culture flasks and incubated at 37C in the presence of 5% CO2 in a humidified incubator. 2.0x10^6 neonatal rat ventricular myocytes were treated with 40 mkM of Raclopride for 24 h.
Substance Class Chemical
Record UNII
GE077RPG04
Record Status Validated (UNII)
Record Version