{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Search results for tranexamic root_references_citation in Reference Text / Citation (approximate match)
Status:
US Approved Rx
(2015)
Source:
ANDA203991
(2015)
Source URL:
First approved in 2001
Source:
LUMIGAN by ABBVIE
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Bimatoprost (marketed in the US, Canada and Europe by Allergan, under the trade name Lumigan) ophthalmic solution is a topical medication used for controlling the progression of glaucoma or ocular hypertension, by reducing intraocular pressure. It is a prostaglandin analogue that works by increasing the outflow of aqueous fluid from the eyes. It binds to the prostanoid FP receptor. It selectively mimics the effects of naturally occurring substances, prostamides. Bimatoprost is believed to lower intraocular pressure (IOP) in humans by increasing outflow of aqueous humor through both the trabecular meshwork and uveoscleral routes. Elevated IOP presents a major risk factor for glaucomatous field loss. The higher the level of IOP, the greater the likelihood of optic nerve damage and visual field loss. Bimatoprost is the major circulating species in the blood once it reaches the systemic circulation following ocular dosing. Bimatoprost then undergoes oxidation, N-deethylation and glucuronidation to form a diverse variety of metabolites. In human blood, bimatoprost resides mainly in the plasma. Approximately 12% of bimatoprost remains unbound in human plasma.
Status:
US Approved Rx
(2014)
Source:
ANDA079215
(2014)
Source URL:
First approved in 1998
Source:
NDA020835
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Risedronic acid is a pyridinyl bisphosphonate that inhibits osteoclast-mediated bone resorption and modulates bone metabolism. The action of risedronate on bone tissue is based partly on its affinity for hydroxyapatite, which is part of the mineral matrix of bone. Risedronate also targets farnesyl pyrophosphate (FPP) synthase. It is FDA approved for the treatment of postmenopausal osteoporosis, osteoporosis in men, glucocorticoid-induced osteoporosis and Paget’s disease. Calcium, antacids, or oral medications containing divalent cations interfere with the absorption of Risedronic acid. Common adverse reactions include rash, abdominal pain, constipation, diarrhea, indigestion, nausea, backache, urinary tract infectious disease and influenza-like illness.
Status:
US Approved Rx
(2014)
Source:
ANDA204165
(2014)
Source URL:
First approved in 1997
Source:
NDA020839
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Clopidogrel, an antiplatelet agent structurally and pharmacologically similar to ticlopidine, is used to inhibit blood clots in a variety of conditions such as peripheral vascular disease, coronary artery disease, and cerebrovascular disease. Clopidogrel is sold under the name Plavix by Sanofi and Bristol-Myers Squibb. Plavix (clopidogrel bisulfate) is an inhibitor of ADP-induced platelet aggregation acting by direct
inhibition of adenosine diphosphate (ADP) binding to its receptor and of the subsequent ADPmediated
activation of the glycoprotein GPIIb/IIIa complex. Clopidogrel must be metabolized by CYP450 enzymes to produce the active metabolite that
inhibits platelet aggregation. The active metabolite of clopidogrel selectively inhibits the
binding of adenosine diphosphate (ADP) to its platelet P2Y12 receptor and the subsequent ADPmediated
activation of the glycoprotein GPIIb/IIIa complex, thereby inhibiting platelet
aggregation. This action is irreversible. Consequently, platelets exposed to clopidogrel’s active
metabolite are affected for the remainder of their lifespan (about 7 to 10 days). Platelet
aggregation induced by agonists other than ADP is also inhibited by blocking the amplification
of platelet activation by released ADP. Plavix (clopidogrel bisulfate) is indicated for the reduction of atherothrombotic events.
Status:
US Approved Rx
(2019)
Source:
NDA211882
(2019)
Source URL:
First approved in 1997
Source:
NDA020600
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Tazarotene a novel acetylenic retinoid is known to be effective in the topical treatment of psoriasis and acne. Tazarotene is rapidly and completely metabolized to its active metabolite tazarotenic acid. The exact mechanism of action of tazarotenic acid in the treatment of psoriasis and acne is not clearly defined. However, it is thought that the selective interaction of tazarotenic acid with the retinoic acid receptor (RAR) family (RARα, RARβ, and RARγ) and the subsequent induction of both positive and negative gene regulatory effects may be involved.
Status:
US Approved Rx
(1998)
Source:
NDA020818
(1998)
Source URL:
First approved in 1996
Source:
DIOVAN by NOVARTIS
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Valsartan (DIOVAN®) is a tetrazole derivative, and specific angiotensin II type 1 (AT1) receptor blocker that is indicated for the treatment of hypertension, to lower blood pressure. Angiotensin II is formed from angiotensin I in a reaction catalyzed by angiotensin-converting enzyme. Angiotensin II is the principal pressor agent of the renin-angiotensin system, with effects that include vasoconstriction, stimulation of synthesis and release of aldosterone, cardiac stimulation, and renal reabsorption of sodium. Valsartan (DIOVAN®) blocks the vasoconstrictor and aldosterone-secreting effects of angiotensin II by selectively blocking the binding of angiotensin II to the AT1 receptor in many tissues, such as vascular smooth muscle and the adrenal gland. Its action is therefore independent of the pathways for angiotensin II synthesis.
Status:
US Approved Rx
(2017)
Source:
ANDA206935
(2017)
Source URL:
First approved in 1996
Source:
NDA020571
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Irinotecan is an antineoplastic enzyme inhibitor primarily used in the treatment of colorectal cancer. Irinotecan is sold under the brand name Camptosar among others. CAMPTOSAR is a topoisomerase inhibitor indicated for:
• First-line therapy in combination with 5-fluorouracil and leucovorin for
patients with metastatic carcinoma of the colon or rectum.
• Patients with metastatic carcinoma of the colon or rectum whose disease
has recurred or progressed following initial fluorouracil-based therapy.
Irinotecan is a derivative of camptothecin. Camptothecins interact specifically with the enzyme
topoisomerase I, which relieves torsional strain in DNA by inducing reversible single-strand
breaks. Irinotecan and its active metabolite SN-38 bind to the topoisomerase I-DNA complex
and prevent religation of these single-strand breaks. Current research suggests that the
cytotoxicity of irinotecan is due to double-strand DNA damage produced during DNA synthesis
when replication enzymes interact with the ternary complex formed by topoisomerase I, DNA,
and either irinotecan or SN-38. Mammalian cells cannot efficiently repair these double-strand
breaks.
Status:
US Approved Rx
(2012)
Source:
ANDA091541
(2012)
Source URL:
First approved in 1995
Source:
NDA020387
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Losartan is a selective, competitive angiotensin II receptor type 1 (AT1) antagonist. Losartant is recommended as one of several preferred agents for the initial management of hypertension. Administration of losartan reduces the risk of stroke in patients with hypertension and left ventricular hypertrophy. Losartan is indicated for the treatment of diabetic nephropathy with an elevated serum creatinine and proteinuria in patients with type 2 diabetes and a history of hypertension.
Status:
US Approved Rx
(2017)
Source:
NDA208630
(2017)
Source URL:
First approved in 1995
Source:
ANDA077614
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Aminolevulinic Acid is the first compound in the porphyrin synthesis pathway. The metabolism of aminolevulinic acid (ALA) is the first step in the biochemical
pathway resulting in heme synthesis. Aminolevulinic acid is not a photosensitizer, but rather a
metabolic precursor of protoporphyrin IX (PpIX), which is a photosensitizer. The synthesis of ALA is
normally tightly controlled by feedback inhibition of the enzyme, ALA synthetase, presumably by
intracellular heme levels. ALA, when provided to the cell, bypasses this control point and results in the
accumulation of PpIX, which is converted into heme by ferrochelatase through the addition of iron to the PpIX nucleus. Marketed under the brand name LEVULAN KERASTICK for Topical Solution plus blue light illumination using the BLU-U Blue Light Photodynamic Therapy Illuminator, it is indicated for the treatment of minimally to moderately
thick actinic keratoses (Grade 1 or 2, see table 2 for definition) of the face or scalp. Aminolevulinic acid is also being studied in the treatment of other conditions and types of cancer. An orally-administered in vivo diagnostic agent, Aminolevulinic acid, is used in photodynamic diagnosis
(PDD) whose aim is to help doctors visualize the tumor tissue during surgical resection of malignant glioma, it is
already sold in over 20 European countries including Germany and the U.K. According to the presumed mechanism of action, photosensitization following application of aminolevulinic acid (ALA) topical solution occurs through the metabolic conversion of ALA to protoporphyrin IX (PpIX), which accumulates in the skin to which aminolevulinic acid has been applied. When exposed to light of appropriate wavelength and energy, the accumulated PpIX produces a photodynamic reaction, a cytotoxic process dependent upon the simultaneous presence of light and oxygen. The absorption of light results in an excited state of the porphyrin molecule, and subsequent spin transfer from PpIX to molecular oxygen generates singlet oxygen, which can further react to form superoxide and hydroxyl radicals. Photosensitization of actinic (solar) keratosis lesions using aminolevulinic acid, plus illumination with the BLU-UTM Blue Light Photodynamic Therapy Illuminator (BLU-U), is the basis for aminolevulinic acid photodynamic therapy (PDT).
Status:
US Approved Rx
(2009)
Source:
ANDA090258
(2009)
Source URL:
First approved in 1995
Source:
NDA020560
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Alendronic acid is a bisphosphonate drug used for osteoporosis, osteogenesis imperfecta, and several other bone diseases. It is marketed alone as well as in combination with vitamin D. Alendronate inhibits osteoclast-mediated bone-resorption. Like all bisphosphonates, it is chemically related to inorganic pyrophosphate, the endogenous regulator of bone turnover. But while pyrophosphate inhibits both osteoclastic bone resorption and the mineralization of the bone newly formed by osteoblasts, alendronate specifically inhibits bone resorption without any effect on mineralization at pharmacologically achievable doses. Its inhibition of bone-resorption is dose-dependent and approximately 1,000 times stronger than the equimolar effect of the first bisphosphonate drug, etidronate. Under therapy, normal bone tissue develops, and alendronate is deposited in the bone-matrix in a pharmacologically inactive form. For optimal action, enough calcium and vitamin D are needed in the body in order to promote normal bone development. Hypocalcemia should, therefore, be corrected before starting therapy. Treatment of post-menopausal women and people with osteogenesis imperfecta over the age of 22 with alendronic acid has demonstrated normalization of the rate of bone turnover, significant increase in BMD (bone mineral density) of the spine, hip, wrist and total body, and significant reductions in the risk of vertebral (spine) fractures, wrist fractures, hip fractures, and all non-vertebral fractures. In the Fracture Intervention Trial, the women with the highest risk of fracture (by virtue of pre-existing vertebral fractures) were treated with Fosamax 5 mg/day for two years followed by 10 mg/day for the third year. This resulted in approximately 50% reductions in fractures of the spine, hip, and wrist compared with the control group taking placebos. Both groups also took calcium and vitamin D.
Status:
US Approved Rx
(2002)
Source:
NDA021470
(2002)
Source URL:
First approved in 1995
Source:
NDA020428
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Azelaic acid, a naturally occurring saturated dicarboxylic acid found in wheat, rye, and barley, possesses antimicrobial activity, affects keratin production, and reduces inflammation. One of the brand name for azelaic acid is FINACEA,Gel, 15% is indicated for topical treatment of the inflammatory papules and pustules of mild to moderate rosacea. Although some reduction of erythema, which was present in patients with papules, and pustules of rosacea occurred in clinical studies, efficacy for treatment of erythema in rosacea in the absence of papules and pustules has not been evaluated. Rosacea is a common skin condition thought to be primarily an inflammatory disorder. Neutrophils, in particular, have been implicated in the inflammation associated with rosacea and mediate many of their effects through the release of reactive oxygen species. Many effective agents for rosacea, including topical azelaic acid have anti-inflammatory properties. Azelaic acid per se has multiple modes of action in rosacea, but an anti-inflammatory effect achieved by reducing reactive oxygen species appears to be the main pharmacological action. A possible mechanism of action for azelaic acid in the human epidermis includes its possibility to inhibit tyrosinase and of membrane-associated thioredoxin reductase enzymes, this enzyme is shown to regulate tyrosinase through a feedback mechanism involving electron transfer to intracellular thioredoxin, followed by a specific interaction between reduced thioredoxin and tyrosinase.