U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 21 - 30 of 2063 results

Status:
First approved in 2001

Class (Stereo):
CHEMICAL (ABSOLUTE)



Bimatoprost (marketed in the US, Canada and Europe by Allergan, under the trade name Lumigan) ophthalmic solution is a topical medication used for controlling the progression of glaucoma or ocular hypertension, by reducing intraocular pressure. It is a prostaglandin analogue that works by increasing the outflow of aqueous fluid from the eyes. It binds to the prostanoid FP receptor. It selectively mimics the effects of naturally occurring substances, prostamides. Bimatoprost is believed to lower intraocular pressure (IOP) in humans by increasing outflow of aqueous humor through both the trabecular meshwork and uveoscleral routes. Elevated IOP presents a major risk factor for glaucomatous field loss. The higher the level of IOP, the greater the likelihood of optic nerve damage and visual field loss. Bimatoprost is the major circulating species in the blood once it reaches the systemic circulation following ocular dosing. Bimatoprost then undergoes oxidation, N-deethylation and glucuronidation to form a diverse variety of metabolites. In human blood, bimatoprost resides mainly in the plasma. Approximately 12% of bimatoprost remains unbound in human plasma.
Risedronic acid is a pyridinyl bisphosphonate that inhibits osteoclast-mediated bone resorption and modulates bone metabolism. The action of risedronate on bone tissue is based partly on its affinity for hydroxyapatite, which is part of the mineral matrix of bone. Risedronate also targets farnesyl pyrophosphate (FPP) synthase. It is FDA approved for the treatment of postmenopausal osteoporosis, osteoporosis in men, glucocorticoid-induced osteoporosis and Paget’s disease. Calcium, antacids, or oral medications containing divalent cations interfere with the absorption of Risedronic acid. Common adverse reactions include rash, abdominal pain, constipation, diarrhea, indigestion, nausea, backache, urinary tract infectious disease and influenza-like illness.
Clopidogrel, an antiplatelet agent structurally and pharmacologically similar to ticlopidine, is used to inhibit blood clots in a variety of conditions such as peripheral vascular disease, coronary artery disease, and cerebrovascular disease. Clopidogrel is sold under the name Plavix by Sanofi and Bristol-Myers Squibb. Plavix (clopidogrel bisulfate) is an inhibitor of ADP-induced platelet aggregation acting by direct inhibition of adenosine diphosphate (ADP) binding to its receptor and of the subsequent ADPmediated activation of the glycoprotein GPIIb/IIIa complex. Clopidogrel must be metabolized by CYP450 enzymes to produce the active metabolite that inhibits platelet aggregation. The active metabolite of clopidogrel selectively inhibits the binding of adenosine diphosphate (ADP) to its platelet P2Y12 receptor and the subsequent ADPmediated activation of the glycoprotein GPIIb/IIIa complex, thereby inhibiting platelet aggregation. This action is irreversible. Consequently, platelets exposed to clopidogrel’s active metabolite are affected for the remainder of their lifespan (about 7 to 10 days). Platelet aggregation induced by agonists other than ADP is also inhibited by blocking the amplification of platelet activation by released ADP. Plavix (clopidogrel bisulfate) is indicated for the reduction of atherothrombotic events.
Tazarotene is a prodrug and a member of the acetylenic class of retinoids. Following topical application, tazarotene undergoes esterase hydrolysis to form its active metabolite, tazarotenic acid. When treating acne tazarotene may be taken in conjunction with an oral antibiotic. Tazarotene has been shown in peer-reviewed double blinded studies to reduce: mottling and hyperpigmentation, sallowness, fine wrinkling and coarse wrinkling in sun damaged skin. Histological studies have shown that long term (greater than 1 year) use of Tazarotene is associated with a significant reduction in atypical melanocytes and keratocytes - cells considered to be precursors of skin cancer. Some studies have shown long term use of Tazarotene to be associated with increased collagen production and better organization of skin collagen bundles. Although the exact mechanism of tazarotene action is not known, studies have shown that the active form of the drug (tazarotenic acid) binds to all three members of the retinoic acid receptor (RAR) family: RARa, RARb, and RARg, but shows relative selectivity for RARb, and RARg and may modify gene expression. It also has affinity for RXR receptors. Tazarotene is used to treat psoriasis, acne and sun damaged skin (photodamage). Tazarotene is marketed as Tazorac, Avage, Zorac, and Fabior.
There is no information in the literature about pharmacological and biological application of definite isomer of valsatran, R – form (also known as VALSARTAN, D- or CGP-49309). However there were found, that in the tablets of valsartan, which are used to treat high blood pressure and to heart failure, the R-enantiomer was an impurity.
Irinotecan is an antineoplastic enzyme inhibitor primarily used in the treatment of colorectal cancer. Irinotecan is sold under the brand name Camptosar among others. CAMPTOSAR is a topoisomerase inhibitor indicated for: • First-line therapy in combination with 5-fluorouracil and leucovorin for patients with metastatic carcinoma of the colon or rectum. • Patients with metastatic carcinoma of the colon or rectum whose disease has recurred or progressed following initial fluorouracil-based therapy. Irinotecan is a derivative of camptothecin. Camptothecins interact specifically with the enzyme topoisomerase I, which relieves torsional strain in DNA by inducing reversible single-strand breaks. Irinotecan and its active metabolite SN-38 bind to the topoisomerase I-DNA complex and prevent religation of these single-strand breaks. Current research suggests that the cytotoxicity of irinotecan is due to double-strand DNA damage produced during DNA synthesis when replication enzymes interact with the ternary complex formed by topoisomerase I, DNA, and either irinotecan or SN-38. Mammalian cells cannot efficiently repair these double-strand breaks.
Losartan is a selective, competitive angiotensin II receptor type 1 (AT1) antagonist. Losartant is recommended as one of several preferred agents for the initial management of hypertension. Administration of losartan reduces the risk of stroke in patients with hypertension and left ventricular hypertrophy. Losartan is indicated for the treatment of diabetic nephropathy with an elevated serum creatinine and proteinuria in patients with type 2 diabetes and a history of hypertension.
Mycophenolic acid (MPA) possesses antibacterial, antifungal, antiviral, immunosuppressive and anticancer properties. Mycophenolic acid (MPA) is a fungal metabolite that was initially discovered by Bartolomeo Gosio in 1893 as an antibiotic against anthrax bacillus, Bacillus anthracis. It is an uncompetitive and reversible inhibitor of inosine monophosphate dehydrogenase (IMPDH), and therefore inhibits the de novo pathway of guanosine nucleotide synthesis without incorporation to DNA. It was approved under the brand name Myfortic for the prophylaxis of organ rejection in adult patients receiving a kidney transplant and is indicated for the prophylaxis of organ rejection in pediatric patients 5 years of age and older who are at least 6 months post kidney transplant. Myfortic is to be used in combination with cyclosporine and corticosteroids.
Aminolevulinic Acid is the first compound in the porphyrin synthesis pathway. The metabolism of aminolevulinic acid (ALA) is the first step in the biochemical pathway resulting in heme synthesis. Aminolevulinic acid is not a photosensitizer, but rather a metabolic precursor of protoporphyrin IX (PpIX), which is a photosensitizer. The synthesis of ALA is normally tightly controlled by feedback inhibition of the enzyme, ALA synthetase, presumably by intracellular heme levels. ALA, when provided to the cell, bypasses this control point and results in the accumulation of PpIX, which is converted into heme by ferrochelatase through the addition of iron to the PpIX nucleus. Marketed under the brand name LEVULAN KERASTICK for Topical Solution plus blue light illumination using the BLU-U Blue Light Photodynamic Therapy Illuminator, it is indicated for the treatment of minimally to moderately thick actinic keratoses (Grade 1 or 2, see table 2 for definition) of the face or scalp. Aminolevulinic acid is also being studied in the treatment of other conditions and types of cancer. An orally-administered in vivo diagnostic agent, Aminolevulinic acid, is used in photodynamic diagnosis (PDD) whose aim is to help doctors visualize the tumor tissue during surgical resection of malignant glioma, it is already sold in over 20 European countries including Germany and the U.K. According to the presumed mechanism of action, photosensitization following application of aminolevulinic acid (ALA) topical solution occurs through the metabolic conversion of ALA to protoporphyrin IX (PpIX), which accumulates in the skin to which aminolevulinic acid has been applied. When exposed to light of appropriate wavelength and energy, the accumulated PpIX produces a photodynamic reaction, a cytotoxic process dependent upon the simultaneous presence of light and oxygen. The absorption of light results in an excited state of the porphyrin molecule, and subsequent spin transfer from PpIX to molecular oxygen generates singlet oxygen, which can further react to form superoxide and hydroxyl radicals. Photosensitization of actinic (solar) keratosis lesions using aminolevulinic acid, plus illumination with the BLU-UTM Blue Light Photodynamic Therapy Illuminator (BLU-U), is the basis for aminolevulinic acid photodynamic therapy (PDT).
Alendronic acid is a bisphosphonate drug used for osteoporosis, osteogenesis imperfecta, and several other bone diseases. It is marketed alone as well as in combination with vitamin D. Alendronate inhibits osteoclast-mediated bone-resorption. Like all bisphosphonates, it is chemically related to inorganic pyrophosphate, the endogenous regulator of bone turnover. But while pyrophosphate inhibits both osteoclastic bone resorption and the mineralization of the bone newly formed by osteoblasts, alendronate specifically inhibits bone resorption without any effect on mineralization at pharmacologically achievable doses. Its inhibition of bone-resorption is dose-dependent and approximately 1,000 times stronger than the equimolar effect of the first bisphosphonate drug, etidronate. Under therapy, normal bone tissue develops, and alendronate is deposited in the bone-matrix in a pharmacologically inactive form. For optimal action, enough calcium and vitamin D are needed in the body in order to promote normal bone development. Hypocalcemia should, therefore, be corrected before starting therapy. Treatment of post-menopausal women and people with osteogenesis imperfecta over the age of 22 with alendronic acid has demonstrated normalization of the rate of bone turnover, significant increase in BMD (bone mineral density) of the spine, hip, wrist and total body, and significant reductions in the risk of vertebral (spine) fractures, wrist fractures, hip fractures, and all non-vertebral fractures. In the Fracture Intervention Trial, the women with the highest risk of fracture (by virtue of pre-existing vertebral fractures) were treated with Fosamax 5 mg/day for two years followed by 10 mg/day for the third year. This resulted in approximately 50% reductions in fractures of the spine, hip, and wrist compared with the control group taking placebos. Both groups also took calcium and vitamin D.