U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 21 - 30 of 261 results

Status:
First approved in 1977

Class (Stereo):
CHEMICAL (ABSOLUTE)



Diflorasone is a topical corticosteroid used to treat itching and inflammation of the skin. Topical corticosteroids share anti-inflammatory, antipruritic and vasoconstrictive actions. The mechanism of anti-inflammatory activity of the topical corticosteroids is unclear. Various laboratory methods, including vasoconstrictor assays, are used to compare and predict potencies and/or clinical efficacies of the topical corticosteroids. There is some evidence to suggest that a recognizable correlation exists between vasoconstrictor potency and therapeutic efficacy in man. The extent of percutaneous absorption of topical corticosteroids is determined by many factors including the vehicle, the integrity of the epidermal barrier, and the use of occlusive dressings. Topical corticosteroids can be absorbed from normal intact skin. Inflammation and/or other disease processes in the skin increase percutaneous absorption. Occlusive dressings substantially increase the percutaneous absorption of topical corticosteroids. Thus, occlusive dressings may be a valuable therapeutic adjunct for treatment of resistant dermatoses. Once absorbed through the skin, topical corticosteroids are handled through pharmacokinetic pathways similar to systemically administered corticosteroids. Corticosteroids are bound to plasma proteins in varying degrees. They are metabolized primarily in the liver and are then excreted by the kidneys. Some of the topical corticosteroids and their metabolites are also excreted into the bile.
Status:
First approved in 1976

Class (Stereo):
CHEMICAL (ACHIRAL)


Iodide ion I-123 is the most suitable isotope of iodine for the diagnostic study of thyroid diseases. Sodium Iodide I 131 Capsules Diagnostic is indicated for use in adults for: Assessment of thyroid function using radioactive iodine (RAI) uptake test and Imaging the thyroid (scintigraphy). The following adverse reaction has been described elsewhere in the labeling: Hypersensitivity Reactions. The following adverse reactions have been identified during post-approval use from Sodium Iodide I 131 Capsules Diagnostic: Gastrointestinal disorders (vomiting, nausea, and diarrhea); General disorders and administration site conditions (local thyroid swelling); Immune system disorders (hypersensitivity reactions); Skin and subcutaneous tissue disorders (itching, rash, hives, and erythema). Certain drugs and iodine-containing foods interfere with the accumulation of radioiodide by the thyroid.
Carbachol is a potent cholinergic (parasympathomimetic) agent which produces constriction of the iris and ciliary body resulting in reduction in intraocular pressure.
Status:
First approved in 1966

Class (Stereo):
CHEMICAL (ABSOLUTE)


Conditions:

Etynodiol (used in a form of diacetate) is a steroid that was used as a contraceptive drug. Etynodiol diacetate and etynodiol are rapidly metabolized to an active metabolite, norethisterone, which binds to progesterone receptor and modulates its activity.
Status:
First approved in 1964
Source:
Virac by Ruson
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)



Valproic acid (VPA; valproate; di-n-propylacetic acid, DPA; 2-propylpentanoic acid, or 2-propylvaleric acid) was first synthesized in 1882, by Burton. FDA approved valproic acid for the treatment of manic episodes associated with bipolar disorder, for the monotherapy and adjunctive therapy of complex partial seizures and simple and complex absence seizures and adjunctive therapy in patients with multiple seizure types that include absence seizures and for the prophylaxis of migraine headaches. The mechanisms of VPA which seem to be of clinical importance in the treatment of epilepsy include increased gamma-aminobutyric acid (GABA)-ergic activity, reduction in excitatory neurotransmission, and modification of monoamines. Recently, it was discovered that the VPA is a class I selective histone deacetylase inhibitor. This activity can be distinguished from its therapeutically exploited antiepileptic activity.
Sulfamethoxazole is a synthetic antibacterial drug,which is used in combination with trimethoprim (Bactrim, Septra) for the treatment or prevention of infections that are proven or strongly suspected to be caused by bacteria. Sulfamethoxazole acts by inhibiting folic acid synthesis via enzyme called dihydropteroate synthase.
Vancomycin is a branched tricyclic glycosylated nonribosomal peptide produced by the fermentation of the Actinobacteria species Amycolatopsis orientalis (formerly Nocardia orientalis). Vancomycin became available for clinical use >50 years ago. It is often reserved as the "drug of last resort", used only after treatment with other antibiotics had failed. Vancomycin has been shown to be active against most strains of the following microorganisms, both in vitro and in clinical infections: Listeria monocytogenes, Streptococcus pyogenes, Streptococcus pneumoniae (including penicillin-resistant strains), Streptococcus agalactiae, Actinomyces species, and Lactobacillus species. The combination of vancomycin and an aminoglycoside acts synergistically in vitro against many strains of Staphylococcus aureus, Streptococcus bovis, enterococci, and the viridans group streptococci. The bactericidal action of vancomycin results primarily from inhibition of cell-wall biosynthesis. Specifically, vancomycin prevents the incorporation of N-acetylmuramic acid (NAM)- and N-acetylglucosamine (NAG)-peptide subunits from being incorporated into the peptidoglycan matrix; which forms the major structural component of Gram-positive cell walls. The large hydrophilic molecule is able to form hydrogen bond interactions with the terminal D-alanyl-D-alanine moieties of the NAM/NAG-peptides. Normally this is a five-point interaction. This binding of vancomycin to the D-Ala-D-Ala prevents the incorporation of the NAM/NAG-peptide subunits into the peptidoglycan matrix. In addition, vancomycin alters bacterial-cell-membrane permeability and RNA synthesis. There is no cross-resistance between vancomycin and other antibiotics. Vancomycin is not active in vitro against gram-negative bacilli, mycobacteria, or fungi.

Class (Stereo):
CHEMICAL (ACHIRAL)



Acquired myasthenia gravis (MG) is a chronic autoimmune disorder of the neuromuscular junction, characterized clinically by muscle weakness and abnormal fatigability on exertion. Current guidelines and recommendations for MG treatment are based largely on clinical experience, retrospective analyses and expert consensus. Pyridostigmine (under the trade names Mestinon (Valeant Pharmaceuticals)), has been used as a treatment for MG for over 50 years and is generally considered safe. It is suitable as a long-term treatment in patients with generalized non-progressive milder disease, and as an adjunctive therapy in patients with severe disease who are also receiving immunotherapy. Pyridostigmine inhibits acetylcholinesterase in the synaptic cleft by competing with acetylcholine for attachment to acetylcholinesterase, thus slowing down the hydrolysis of acetylcholine, and thereby increases efficiency of cholinergic transmission in the neuromuscular junction and prolongs the effects of acetylcholine. The side effects of Mestinon are most commonly related to over dosage and generally are of two varieties, muscarinic and nicotinic. Among those in the former group are nausea, vomiting, diarrhea, abdominal cramps, increased peristalsis, increased salivation, increased bronchial secretions, miosis and diaphoresis. Nicotinic side effects are comprised chiefly of muscle cramps, fasciculation and weakness. Muscarinic side effects can usually be counteracted by atropine, but for reasons shown in the preceding section the expedient is not without danger. As with any compound containing the bromide radical, a skin rash may be seen in an occasional patient. Such reactions usually subside promptly upon discontinuance of the medication.
Sulfasalazine is an anti-inflammatory indicated for the treatment of ulcerative colitis and rheumatoid arthritis. The mode of action of Sulfasalazine or its metabolites, 5-aminosalicylic acid (5-ASA) and sulfapyridine (SP), is still under investigation, but may be related to the anti-inflammatory and/or immunomodulatory properties that have been observed in animal and in vitromodels, to its affinity for connective tissue, and/or to the relatively high concentration it reaches in serous fluids, the liver and intestinal walls, as demonstrated in autoradiographic studies in animals. In ulcerative colitis, clinical studies utilizing rectal administration of Sulfasalazine, SP and 5-ASA have indicated that the major therapeutic action may reside in the 5-ASA moiety. The relative contribution of the parent drug and the major metabolites in rheumatoid arthritis is unknown. Sulfasalazine is used for the treatment of Crohn's disease and rheumatoid arthritis as a second-line agent. Sulfasalazine is marketed under the trade name Azulfidine among others.