{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Search results for "ATC|CARDIOVASCULAR SYSTEM|CARDIAC THERAPY" in comments (approximate match)
Status:
US Approved Rx
(2002)
Source:
ANDA076268
(2002)
Source URL:
First approved in 1954
Source:
NDA009330
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Digoxin, a cardiac glycoside similar to digitoxin, is used to treat congestive heart failure and supraventricular arrhythmias due to reentry mechanisms, and to control ventricular rate in the treatment of chronic atrial fibrillation. Digoxin inhibits the Na-K-ATPase membrane pump, resulting in an increase in intracellular sodium. The sodium calcium exchanger (NCX) in turn tries to extrude the sodium and in so doing, pumps in more calcium. Increased intracellular concentrations of calcium may promote activation of contractile proteins (e.g., actin, myosin). Digoxin also acts on the electrical activity of the heart, increasing the slope of phase 4 depolarization, shortening the action potential duration, and decreasing the maximal diastolic potential.
Status:
US Approved Rx
(2021)
Source:
ANDA211304
(2021)
Source URL:
First approved in 1954
Source:
ARAMINE by MERCK
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Metaraminol is a potent sympathomimetic amine that increases both systolic and diastolic blood pressure, is an adrenergic receptor alpha-1 agonist.. Metaraminol is indicated for prevention and treatment of the acute hypotensive state occurring with spinal anesthesia. It is also indicated as adjunctive treatment of hypotension due to hemorrhage, reactions to medications, surgical complications, and shock associated with brain damage due to trauma or tumor. Metaraminol is also used in the treatment of priapism, in spite of this application was not approved, it appears to be effective.
Status:
US Approved Rx
(2021)
Source:
ANDA214543
(2021)
Source URL:
First approved in 1950
Source:
NDA007513
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Norepinephrine (l-arterenol/Levarterenol or l-norepinephrine) is a sympathomimetic catecholamine with multiple roles including as a hormone and a neurotransmitter. As a stress hormone, norepinephrine affects parts of the brain where attention and responding actions are controlled. Along with epinephrine, norepinephrine also underlies the fight-or-flight response, directly increasing heart rate, triggering the release of glucose from energy stores, and increasing blood flow to skeletal muscle. Norepinephrine can also suppress neuroinflammation when released diffusely in the brain from the locus ceruleus. Norepinephrine may be used for blood pressure control in certain acute hypotensive states (e.g., pheochromocytomectomy, sympathectomy, poliomyelitis, spinal anesthesia, myocardial infarction, septicemia, blood transfusion, and drug reactions) and as an adjunct in the treatment of cardiac arrest and profound hypotension. Norepinephrine performs its action by being released into the synaptic cleft, where it acts on adrenergic receptors, followed by the signal termination, either by degradation of norepinephrine, or by uptake by surrounding cells. Prolonged administration of any potent vasopressor may result in plasma volume depletion which should be continuously corrected by appropriate fluid and electrolyte replacement therapy.If plasma volumes are not corrected, hypotension may recur when Norepinephrine is discontinued, or blood pressure may be maintained at the risk of severe peripheral and visceral vasoconstriction (e.g., decreased renal perfusion)with diminution in blood flow and tissue perfusion with subsequent tissue hypoxia and lactic acidosis and possible ischemic injury. Gangrene of extremities has been rarely reported. Overdoses or conventional doses in hypersensitive persons (e.g., hyperthyroid patients) cause severe hypertension with violent headache, photophobia, stabbing retrosternal pain, pallor, intense sweating, and vomiting.
Status:
US Approved Rx
(1982)
Source:
ANDA088072
(1982)
Source URL:
First marketed in 1921
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Quinidine is a pharmaceutical agent that acts as a class I antiarrhythmic agent (Ia) in the heart. It is a stereoisomer of quinine, originally derived from the bark of the cinchona tree. The drug causes increased action potential duration, as well as a prolonged QT interval. Like all other class I antiarrhythmic agents, quinidine primarily works by blocking the fast inward sodium current (INa). Quinidine's effect on INa is known as a 'use-dependent block'. This means at higher heart rates, the block increases, while at lower heart rates, the block decreases. The effect of blocking the fast inward sodium current causes the phase 0 depolarization of the cardiac action potential to decrease (decreased Vmax). Quinidine also blocks the slowly inactivating, tetrodotoxin-sensitive Na current, the slow inward calcium current (ICA), the rapid (IKr) and slow (IKs) components of the delayed potassium rectifier current, the inward potassium rectifier current (IKI), the ATP-sensitive potassium channel (IKATP) and Ito. Quinidine is also an inhibitor of the cytochrome P450 enzyme 2D6 and can lead to increased blood levels of lidocaine, beta blockers, opioids, and some antidepressants. Quinidine also inhibits the transport protein P-glycoprotein and so can cause some peripherally acting drugs such as loperamide to have central nervous system side effects, such as respiratory depression if the two drugs are coadministered. Quinidine can cause thrombocytopenia, granulomatous hepatitis, myasthenia gravis, and torsades de pointes, so is not used much today. Torsades can occur after the first dose. Quinidine-induced thrombocytopenia (low platelet count) is mediated by the immune system and may lead to thrombocytic purpura. A combination of dextromethorphan and quinidine has been shown to alleviate symptoms of easy laughing and crying (pseudobulbar affect) in patients with amyotrophic lateral sclerosis and multiple sclerosis. This drug is marketed as Nuedexta in the United States. Intravenous quinidine is also indicated for the treatment of Plasmodium falciparum malaria. However, quinidine is not considered the first-line therapy for P. falciparum. The recommended treatments for P. falciparum malaria, according to the Toronto Notes 2008, are a combination of either quinine and doxycycline or atovaquone and proguanil (Malarone). The drug is also effective for the treatment of atrial fibrillation in horses.
Status:
US Approved OTC
Source:
21 CFR 348.10(a)(2) external analgesic:male genital desensitizer lidocaine
Source URL:
First approved in 1948
Source:
NDA006488
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Lidocaine is a local anesthetic and cardiac depressant used to numb tissue in a specific area and for management of cardiac arrhythmias, particularly those of ventricular origins, such as occur with acute myocardial infarction. Lidocaine alters signal conduction in neurons by blocking the fast voltage-gated Na+ channels in the neuronal cell membrane responsible for signal propagation. With sufficient blockage, the membrane of the postsynaptic neuron will not depolarize and will thus fail to transmit an action potential. This creates the anesthetic effect by not merely preventing pain signals from propagating to the brain, but by stopping them before they begin. Careful titration allows for a high degree of selectivity in the blockage of sensory neurons, whereas higher concentrations also affect other modalities of neuron signaling. Lidocaine exerts an antiarrhythmic effect by increasing the electrical stimulation threshold of the ventricle during diastole. In usual therapeutic doses, lidocaine hydrochloride produces no change in myocardial contractility, in systemic arterial pressure, or an absolute refractory period. The efficacy profile of lidocaine as a local anesthetic is characterized by a rapid onset of action and intermediate duration of efficacy. Therefore, lidocaine is suitable for infiltration, block, and surface anesthesia. Longer-acting substances such as bupivacaine are sometimes given preference for spinal and epidural anesthesias; lidocaine, though, has the advantage of a rapid onset of action. Lidocaine is also the most important class-1b antiarrhythmic drug; it is used intravenously for the treatment of ventricular arrhythmias (for acute myocardial infarction, digoxin poisoning, cardioversion, or cardiac catheterization) if amiodarone is not available or contraindicated. Lidocaine should be given for this indication after defibrillation, CPR, and vasopressors have been initiated. A routine preventative dose is no longer recommended after a myocardial infarction as the overall benefit is not convincing. Inhaled lidocaine can be used as a cough suppressor acting peripherally to reduce the cough reflex. This application can be implemented as a safety and comfort measure for patients who have to be intubated, as it reduces the incidence of coughing and any tracheal damage it might cause when emerging from anesthesia. Adverse drug reactions (ADRs) are rare when lidocaine is used as a local anesthetic and is administered correctly. Most ADRs associated with lidocaine for anesthesia relate to administration technique (resulting in systemic exposure) or pharmacological effects of anesthesia, and allergic reactions only rarely occur. Systemic exposure to excessive quantities of lidocaine mainly result in a central nervous system (CNS) and cardiovascular effects – CNS effects usually occur at lower blood plasma concentrations and additional cardiovascular effects present at higher concentrations, though cardiovascular collapse may also occur with low concentrations.
Status:
US Approved OTC
Source:
21 CFR 346.12(a) anorectal:vasoconstrictor ephedrine sulfate
Source URL:
First marketed in 1928
Source:
Ephetonine by Merck
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Ephedrine (l-form) is an alkaloid, which was initially purified from Ephedra plant. The extract form Ephedra has been used in China for medicinal purposes for several thousand years. Ephedrine acts as an agonist at alpha- and beta-adrenergic receptors and indirectly causes the release of norepinephrine from sympathetic neurons. The drug crosses the blood brain barrier and stimulates the central nervous system. Ephedrine products are now banned in many countries, as they are a major source for the production of the addictive compound methamphetamine. FDA has approved ephedrine only for the treatment of clinically important hypotension occurring in the setting of anesthesia.
Status:
US Approved OTC
Source:
21 CFR 346.16(a) anorectal:analgesic, anesthetic, antipruritic camphor
Source URL:
First marketed in 1921
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Camphor is a bicyclic monoterpene ketone found widely in plants, especially cinnamomum camphora. Topically, camphor is used to relieve pain. It has been used to treat warts, cold sores, hemorrhoids, and osteoarthritis. It has also been applied topically as an analgesic and an antipruritic. It has been used as a counterirritant, and to increase local blood flow. Camphor has frequently been used topically to treat respiratory tract diseases involving mucous membrane inflammation. It is sometimes used topically to treat cardiac symptoms. Camphor is also used topically as an eardrop, and for treating minor burns.
In inhalation therapy, camphor is used as an antitussive.
Orally, camphor is used as an expectorant, antiflatulent, and for treating respiratory tract diseases. Today, most camphor is synthetic. It is approved by the FDA as a topical antitussive. Camphor is produced synthetically from the oil of turpentine. It has been used for centuries for its medicinal features, in religious rituals, and in cooking. It is no longer used as pesticide. In 1982, the US Food and Drug Administration restricted commercial products intended for medicinal use to contain <11% camphor.
Status:
US Previously Marketed
Source:
GENESA by GENSIA AUTOMEDICS
(1997)
Source URL:
First approved in 1997
Source:
GENESA by GENSIA AUTOMEDICS
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Arbutamine was indicated to elicit acute cardiovascular responses in order to aid in diagnosing the presence or absence of coronary artery disease in patients who cannot exercise adequately. Arbutamine is a synthetic catecholamine with positive chronotropic and inotropic properties. The chronotropic (increase in heart rate [HR]) and inotropic (increase in force of contraction) effects of arbutamine serve to mimic exercise by increasing cardiac work (producing stress) and provoke myocardial ischemia in patients with compromised coronary arteries. In functional assays, arbutamine is more selective for beta-adrenergic receptors than for alpha-adrenergic receptors. The beta-agonist activity of arbutamine provides cardiac stress by increasing HR, cardiac contractility, and systolic blood pressure.
Status:
US Previously Marketed
Source:
FENOLDOPAM MESYLATE by HIKMA
(2004)
Source URL:
First approved in 1997
Source:
CORLOPAM by HOSPIRA
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
Targets:
Conditions:
Fenoldopam (marketed under the brand name Corlopam) is a drug and synthetic benzazepine derivative which acts as a selective D1 receptor partial agonist. Fenoldopam is a rapid-acting vasodilator. It is an agonist for D1-like dopamine receptors and binds with moderate affinity to α2-adrenoceptors. It has no significant affinity for D2-like receptors, α1 and β adrenoceptors, 5HT1 and 5HT2 receptors, or muscarinic receptors. Fenoldopam is a racemic mixture with the R-isomer responsible for the biological activity. The R-isomer has approximately 250-fold higher affinity for D1-like receptors than does the S-isomer. Fenoldopam Mesylate Injection, USP is indicated for the in-hospital, short-term (up to 48 hours) management of severe hypertension when rapid, but quickly reversible, emergency reduction of blood pressure is clinically indicated, including malignant hypertension with deteriorating end-organ function.
Status:
First approved in 1992
Class (Stereo):
CHEMICAL (UNKNOWN)
Targets:
Conditions:
Flosequinan is a vasodilator developed for the treatment of heart failure. The drug was marketed under the name Manoplax, however it was withdrawn by the FDA decision since it increased congestive heart failure symptoms. The exact mechanism of flosequinan action is unknown, but there are studies reporting the inhibition of PDE3 activity.