{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Search results for "WHO ESSENTIAL MEDICINES LIST" in comments (approximate match)
Status:
US Approved Rx
(2012)
Source:
NDA203923
(2012)
Source URL:
First marketed in 1921
Source:
Sodium Thiosulphate U.S.P.
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Sodium thiosulfate (sodium thiosulphate/STS) is a chemical and medication. As a medication, it is used in combination with sodium nitrite under the trade name to NITHIODOTE treat cyanide poisoning. The primary route of endogenous cyanide detoxification is by enzymatic transulfuration to thiocyanate (SCN- ), which is relatively nontoxic and readily excreted in the urine. Sodium thiosulfate is thought to serve as a sulfur donor in the reaction catalyzed by the enzyme rhodanese, thus enhancing the endogenous detoxification of cyanide. In addition, Sodium thiosulfate is used in calciphylaxis in hemodialysis patients with end-stage kidney disease. Calciphylaxis is vasculopathy characterized by ischemia and painful skin necrosis due to calcification and intimal fibroplasia of thrombosis of the panicular arterioles. Sodium thiosulfate is used as treatment due to its antioxidant activity and as a chelating. Sodium thiosulfate renders renal protection by modulating the mitochondrial KATP channel for preventing urolithiasis. Moreover, STS was assumed to play a vital role in on ischemia reperfusion injury (IR). The effectiveness of STS as a cardioprotective agent was attributed to the reduction of apoptosis by binding to the active site of caspase-3 in silico, which was substantiated by the reduced expression of caspase-3 and poly ADP ribose polymerase levels.
Status:
US Approved Rx
(2002)
Source:
ANDA076350
(2002)
Source URL:
First marketed in 1921
Class (Stereo):
CHEMICAL (ACHIRAL)
Status:
US Approved Rx
(2012)
Source:
NDA203922
(2012)
Source URL:
First marketed in 1921
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Nitrite Ion is a symmetric anion with equal N–O bond lengths. Nitrite is important in biochemistry as a source of the potent vasodilator nitric oxide. Nitrate or nitrite (ingested) under conditions that result in endogenous nitrosation has been classified as "Probably carcinogenic to humans" (Group 2A) by International Agency for Research on Cancer (IARC), the specialized cancer agency of the World Health Organization (WHO) of the United Nations. Sodium nitrite is used for the curing of meat because it prevents bacterial growth and, as it is a reducing agent (opposite of oxidation agent), in a reaction with the meat's myoglobin, gives the product a desirable pink-red "fresh" color, such as with corned beef. This use of nitrite goes back to the Middle Ages, and in the US has been formally used since 1925. Because of the relatively high toxicity of nitrite (the lethal dose in humans is about 22 milligrams per kilogram of body weight), the maximum allowed nitrite concentration in meat products is 200 ppm. At these levels, some 80 to 90% of the nitrite in the average U.S. diet is not from cured meat products, but from natural nitrite production from vegetable nitrate intake. Under certain conditions – especially during cooking – nitrites in meat can react with degradation products of amino acids, forming nitrosamines, which are known carcinogens. However, the role of nitrites (and to some extent nitrates) in preventing botulism by preventing C. botulinum endospores from germinating have prevented the complete removal of nitrites from cured meat, and indeed by definition in the U.S., meat cannot be labeled as "cured" without nitrite addition. They are considered irreplaceable in the prevention of botulinum poisoning from consumption of cured dry sausages by preventing spore germination. Nitrite is a member of the drug class antidotes and is used to treat Cyanide Poisoning.
Status:
US Approved Rx
(2024)
Source:
ANDA216959
(2024)
Source URL:
First marketed in 1921
Source:
Methylthionine Chloride U.S.P.
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Methylene blue, also known as methylthioninium chloride, is a medication from WHO's list of essential medicines. Upon administration, methylene blue is converted to leukomethylene blue by erythrocyte methemoblobin reductase in the presence of NADPH. Leukomethylene blue than reduces methemoglobin to oxyhemoglobin, thus restoring oxygen carrying capacity of the blood. Methylene blue is also used as a dye for various diagnostic procedures, for treatment of ifosfamide toxicity and for in vitro staining. Historically, it was used as a photosensitizer for photodynamic therapy for topical treatment of dermatologic or mucocutaneous infections, as an antidote for cyanide poisoning, but these applications are no longer approved. Methylene blue is investigated in clinical trials for treatment of septic shock and Alzheimer's disease.
Status:
US Approved Rx
(1985)
Source:
NDA020145
(1985)
Source URL:
First marketed in 1921
Source:
Spirit of Glyceryl Trinitrate U.S.P.
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Pentaerythritol tetranitrate is an organic nitrate that has been used for the treatment of angina pectoris. Upon administration, the drug undergoes exstensive metabolism to NO which causes vasodilation and the relaxation of smooth muscle cells. The compound belongs to a familiy of explosive substances and may be used accordingly.
Status:
US Approved Rx
(1984)
Source:
ANDA088638
(1984)
Source URL:
First marketed in 1921
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Acetic acid (a component of vinagre) is used in medicine for the treatment of otitis externa caused by bacterial infections. The solution containing acetic acid was approved by FDA.
Status:
US Approved Rx
(1976)
Source:
NDA017641
(1976)
Source URL:
First marketed in 1921
Source:
Elixir of Iron Lactate N.F.
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
Targets:
Conditions:
Sodium lactate is primarily indicated as a source of bicarbonate for prevention or control of mild to moderate metabolic acidosis in patients
with restricted oral intake whose oxidative processes are not seriously impaired. Sodium Lactate is most commonly associated with an E number of “E325” Sodium Lactate blends are commonly used in meat and poultry products to extend shelf life and increase food safety. They have a broad antimicrobial action and are effective at inhibiting most spoilage and pathogenic bacteria. In addition sodium lactate is used in cosmetics as a humectant, providing moisture.
Status:
US Approved Rx
(2022)
Source:
NDA215910
(2022)
Source URL:
First marketed in 1912
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Phenobarbital is a barbiturate derivative used to treat insomnia and anxiety, seizures, hyperbilirubinemia in neonates and cholestasis. Phenobarbital promotes binding to inhibitory gamma-aminobutyric acid subtype receptors, and modulates chloride currents through receptor channels.
Status:
US Approved Rx
(2015)
Source:
ANDA078830
(2015)
Source URL:
First marketed in 1899
Class (Stereo):
CHEMICAL (ABSOLUTE)
The alkaloid L-(-)-scopolamine [L-(-)-hyoscine], a belladonna alkaloid, competitively inhibits muscarinic receptors for acetylcholine and acts as a nonselective muscarinic antagonist, producing both peripheral antimuscarinic properties and central sedative, antiemetic, and amnestic effects. Scopolamine acts: i) as a competitive inhibitor at postganglionic muscarinic receptor sites of the parasympathetic nervous system, and ii) on smooth muscles that respond to acetylcholine but lack cholinergic innervation. It has been suggested that scopolamine acts in the central nervous system (CNS) by blocking cholinergic transmission from the vestibular nuclei to higher centers in the CNS and from the reticular formation to the vomiting center. Scopolamine can inhibit the secretion of saliva and sweat, decrease gastrointestinal secretions and motility, cause drowsiness, dilate the pupils, increase heart rate, and depress motor function. Scopolamine is used for premedication in anesthesia and for the prevention of nausea and vomiting (post operative and associated with motion sickness).
Status:
US Approved OTC
Source:
21 CFR 333.110(f) first aid antibiotic:ointment tetracycline hydrochloride
Source URL:
First approved in 1953
Source:
ACHROMYCIN by LEDERLE
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Discovered as natural products from actinomycetes soil bacteria, the tetracyclines were first reported in the scientific literature in 1948. They were noted for their broad spectrum antibacterial activity and were commercialized with clinical success beginning in the late 1940s to the early 1950s. By catalytic hydrogenation of Aureomycin, using palladium metal and hydrogen, the C7 deschloro derivative was synthesized, producing a compound of higher potency, a better solubility profile, and favorable pharmacological activity; it was subsequently named tetracycline. Tetracyclines are primarily bacteriostatic and exert their antimicrobial effect by the inhibition of protein synthesis by binding to the 30S ribosomal subunit. Tetracycline is active against a broad range of gram-negative and gram-positive organisms. Tetracycline is indicated in the treatment of infections caused by susceptible strains. To reduce the development of drug-resistant bacteria and maintain the effectiveness of tetracycline
hydrochloride and other antibacterial drugs, tetracycline hydrochloride should be used only to treat or
prevent infections that are proven or strongly suspected to be caused by bacteria.