U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 241 - 250 of 36617 results

Natamycin (Pimaricin, Pimafucin, Natadrops, Natacyn) is a polyene antifungal agent originally isolated from Streptomyces natalensis found in a soil sample from Natal, South Africa. Natamycin was discovered in DSM laboratories in 1955. Similar to other polyenes, natamycin binds to ergosterol in the fungal cell membrane. Natamycin blocks fungal growth by binding specifically to ergosterol with¬out permeabilizing the membrane where it inhibits vacuole fusion at the priming phase and interferes with membrane protein functions. Natamycin is also used in the food industry as an effective preservative. Natamycin is active against most Candida spp. Aspergillus spp., Fusarium spp. and other rarer fungi that cause keratitis. Secondary or acquired resistance is probably rare, but not extensively studied. Natamycin is not effective in vitro against gram-positive or gram-negative bacteria. Topical administration appears to produce effective concentrations of natamycin within the corneal stroma but not in intraocular fluid. Natamycin is poorly soluble in water and not absorbed through the skin or mucous membranes, including the vagina. Very little is absorbed through the gastrointestinal tract. After ocular application, therapeutic concentrations are present within the infected cornea, but not in intra-ocular fluid Natamycin may cause some irritation on skin or mucous membranes

Class (Stereo):
CHEMICAL (ACHIRAL)


Conditions:

Difenoxin is a 4-phenylpiperidine which is closely related to the opioid analgesic meperidine. Difenoxin alone is a USA Schedule I controlled drug, as it may be habit forming. However, it is listed as a Schedule IV controlled drug if combined with atropine, which is added to decrease deliberate misuse. Motofen(R) is a brand mixture which combines atropine sulfate and difenoxin hydrochloride. It is approved by the FDA to treat acute and chronic diarrhea. Difenoxin is an active metabolite of the anti-diarrheal drug, diphenoxylate, which is also used in combination with atropine in the brand mixture Lomotil(R). It works mostly in the periphery and activates opioid receptors in the intestine rather than the central nervous system (CNS). Difenoxin is also closely related to loperamide, but unlike loperamide it is still capable of crossing the blood brain barrier to produce weak sedative and analgesic effects. However, the antidiarrheal potency of difenoxin is much greater than its CNS effects, which makes it an attractive alternative to other opioids. Motofen(R) is a combination of atropine, an anticholinergic drug, and difenoxin, an antidiarrheal drug. It has been used in many countries for many years as a second line opioid-agonist antidiarrheal, which exists an intermediate between loperamide and paragoric. Diarrhea which is a result of cyclic or diarrhea predominant Inflammatory Bowel Syndrome may not be treated effectively with difenoxin, diphenoxylate, or loperamide. As such, diarrhea and cramping which does not respond to non-centrally acting derivatives or belladonna derivatives such as atropine are often treated with conservative doses of codeine. In patients with acute ulcerative colitis, as induction of toxic megacolon is possible, and thus use of Motofen(R) is cautioned. Motofen(R) has been assigned pregnancy category C by the FDA, and is to be used only when the potential benefits outweigh the potential risk to the fetus. The safety of use during lactation is unknown and thus not recommended. Each five-sided dye free MOTOFEN® tablet contains: 1 mg of difenoxin (equivalent to 1.09 mg of difenoxin hydrochloride) and 0.025 mg of atropine sulfate (equivalent to 0.01 mg of atropine). Difenoxin acts as an antidiarrheal by activating peripheral opioid receptors in the small intestine and thereby inhibiting peristalsis. However, research has suggested that non-opioid receptor pathways exist. This would explain the potent antidiarrheal effects of difenoxin despite only limited opioid action.
Status:
First approved in 1977

Class (Stereo):
CHEMICAL (RACEMIC)


Conditions:

Baclofen (brand names Kemstro, Lioresal, and Gablofen) is a derivative of gamma-aminobutyric acid (GABA). Baclofen is a muscle relaxer and an antispastic agent and is used to treat muscle symptoms caused by multiple sclerosis, including spasm, pain, and stiffness. It is primarily used to treat spasticity and is under investigation for the treatment of alcoholism. Although baclofen is an analog of the putative inhibitory neurotransmitter gamma-aminobutyric acid (GABA), there is no conclusive evidence that actions on GABA systems are involved in the production of its clinical effects. Baclofen is rapidly and extensively absorbed and eliminated. Absorption may be dose-dependent, being reduced with increasing doses. Baclofen is excreted primarily by the kidney in unchanged form and there is relatively large intersubjective variation in absorption and/or elimination. Baclofen is a direct agonist at GABA-B receptors. The precise mechanism of action of baclofen is not fully known. It is capable of inhibiting both monosynaptic and polysynaptic reflexes at the spinal level, possibly by hyperpolarization of afferent terminals, although actions at supraspinal sites may also occur and contribute to its clinical effect.
Dinoprostone is a naturally occurring prostaglandin E2 (PGE2). Dinoprostone is equivalent to prostaglandin E2 (PGE2). It stimulates labor and delivery by stimulating the uterine, and thus terminates pregnancy. Dinoprostone is also capable of stimulating the smooth muscle of the gastrointestinal tract of man. This activity may be responsible for the vomiting and/or diarrhea that is not uncommon when dinoprostone is used to terminate pregnancy. Dinoprostone administered intravaginally stimulates the myometrium of the gravid uterus to contract in a manner that is similar to the contractions seen in the term uterus during labor, resulting in the evacuation of the products of conception from the uterus. It is believed that dinoprostone exerts its uterine effects via direct myometrial stimulation. It is used for the termination of pregnancy during the second trimester (from the 12th through the 20th gestational week as calculated from the first day of the last normal menstrual period), as well as for evacuation of the uterine contents in the management of missed abortion or intrauterine fetal death up to 28 weeks of gestational age as calculated from the first day of the last normal menstrual period. Also used in the management of nonmetastatic gestational trophoblastic disease (benign hydatidiform mole). Other indications include improving the cervical inducibility (cervical "ripening") in pregnant women at or near term with a medical or obstetrical need for labor induction, and the management of postpartum hemorrhage.
Naproxen (naproxen sodium, NAPROSYN®) is a propionic acid derivative related to the arylacetic acid group of nonsteroidal anti-inflammatory drugs (NSAIDs). It is an anti-inflammatory agent with analgesic and antipyretic properties. Both the acid and its sodium salt are used in the treatment of rheumatoid arthritis and other rheumatic or musculoskeletal disorders, dysmenorrhea, and acute gout. The mechanism of action of the naproxen (naproxen sodium, NAPROSYN®), like that of other NSAIDs, is not completely understood but involves inhibition of cyclooxygenase (COX-1 and COX-2).
Status:
First approved in 1976

Class (Stereo):
CHEMICAL (RACEMIC)



Fenoprofen is a propionic acid derivative with analgesic, antiinflammatory and antipyretic properties. Fenoprofen inhibits prostaglandin synthesis by decreasing the enzyme needed for biosynthesis. In patients with rheumatoid arthritis, the anti-inflammatory action of fenoprofen has been evidenced by relief of pain, increase in grip strength, and reductions in joint swelling, duration of morning stiffness, and disease activity (as assessed by both the investigator and the patient). In patients with osteoarthritis, the anti-inflammatory and analgesic effects of fenoprofen have been demonstrated by reduction in tenderness as a response to pressure and reductions in night pain, stiffness, swelling, and overall disease activity (as assessed by both the patient and the investigator). These effects have also been demonstrated by relief of pain with motion and at rest and increased range of motion in involved joints. In patients with rheumatoid arthritis and osteoarthritis, clinical studies have shown fenoprofen to be comparable to aspirin in controlling the aforementioned measures of disease activity, but mild gastrointestinal reactions (nausea, dyspepsia) and tinnitus occurred less frequently in patients treated with fenoprofen than in aspirin-treated patients. It is not known whether fenoprofen causes less peptic ulceration than does aspirin. In patients with pain, the analgesic action of fenoprofen has produced a reduction in pain intensity, an increase in pain relief, improvement in total analgesia scores, and a sustained analgesic effect. Indicated for relief of the signs and symptoms of rheumatoid arthritis and osteoarthritis. Also for the relief of mild to moderate pain.
Oxybutynin is an antispasmodic, anticholinergic agent indicated for the treatment of overactive bladder with symptoms of urge urinary incontinence, urgency, and frequency. Oxybutynin relaxes bladder smooth muscle. Oxybutynin exhibits only one-fifth of the anticholinergic activity of atropine on the rabbit detrusor muscle, but four to ten times the antispasmodic activity. Antimuscarinic activity resides predominantly in the R-isomer. Oxybutynin exerts a direct antispasmodic effect on smooth muscle and inhibits the muscarinic action of acetylcholine on smooth muscle. No blocking effects occur at skeletal neuromuscular junctions or autonomic ganglia (antinicotinic effects). By inhibiting particularily the M1 and M2 receptors of the bladder, detrusor activity is markedly decreased.

Class (Stereo):
CHEMICAL (ABSOLUTE)



Carbidopa is a competitive inhibitor of aromatic L-amino acid decarboxylase that does not cross the blood-brain barrier, is routinely administered with levodopa (LD) for the treatment of the symptoms of idiopathic Parkinson’s disease (paralysis agitans), postencephalitic parkinsonism, and symptomatic parkinsonism, which may follow injury to the nervous system by carbon monoxide intoxication and/or manganese intoxication. Current evidence indicates that symptoms of Parkinson’s disease are related to depletion of dopamine in the corpus striatum. Administration of dopamine is ineffective in the treatment of Parkinson’s disease apparently because it does not cross the blood-brain barrier. However, levodopa, the metabolic precursor of dopamine, does cross the blood- brain barrier, and presumably is converted to dopamine in the brain. When levodopa is administered orally it is rapidly decarboxylated to dopamine in extracerebral tissues so that only a small portion of a given dose is transported unchanged to the central nervous system. For this reason, large doses of levodopa are required for adequate therapeutic effect and these may often be accompanied by nausea and other adverse reactions, some of which are attributable to dopamine formed in extracerebral tissues. Carbidopa inhibits decarboxylation of peripheral levodopa. Carbidopa has not been demonstrated to have any overt pharmacodynamic actions in the recommended doses.

Class (Stereo):
CHEMICAL (ABSOLUTE)



Gluconic acid is a natural compound produced from glucose through a simple dehydrogenation reaction catalysed by glucose oxidase. Gluconic acid and its salts are used in the formulation of food, pharmaceutical and hygienic products.
Mebendazole, known as Emverm is a (synthetic) broad-spectrum anthelmintic that acts by interfering with carbohydrate metabolism and inhibiting polymerization of microtubules. The loss of the cytoplasmic microtubules leads to impaired uptake of glucose by the larval and adult stages of the susceptible parasites, and depletes their glycogen stores. Degenerative changes in the endoplasmic reticulum, the mitochondria of the germinal layer, and the subsequent release of lysosomes result in decreased production of adenosine triphosphate (ATP), which is the energy required for the survival of the helminth. Due to diminished energy production, the parasite is immobilized and eventually dies. Emverm tablets are used for the treatment of Enterobius vermicularis (pinworm), Trichuris trichiura (whipworm), Ascaris lumbricoides (common roundworm), Ancylostoma duodenale (common hookworm), Necator americanus (American hookworm) in single or mixed infections. All metabolites are devoid of anthelmintic activity. In man, approximately 2% of administered mebendazole is excreted in urine and the remainder in the feces as unchanged drug or a primary metabolite. Preliminary evidence suggests that cimetidine inhibits mebendazole metabolism and may result in an increase in plasma concentrations drug. Mebendazole sometimes causes diarrhea, abdominal pain, and elevated liver enzymes. In rare cases, it has been associated with a dangerously low white blood cell count, low platelet count, and hair loss, with a risk of agranulocytosis in rare cases