U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 251 - 260 of 33407 results

Status:
First approved in 1973
Source:
Pondimin by Robins
Source URL:

Class (Stereo):
CHEMICAL (RACEMIC)



Fenfluramine (former brand names Pondimin, Ponderax and Adifax), also known as 3-trifluoromethyl-N-ethylamphetamine, is an anorectic that is no longer marketed. In combination with phentermine, it was part of the anti-obesity medication Fen-phen. Fenfluramine was introduced on the U.S. market in 1973 and withdrawn in 1997. It is the racemic mixture of two enantiomers, dexfenfluramine, and levofenfluramine. The drug increases the level of serotonin, a neurotransmitter that regulates mood, appetite and other functions. Fenfluramine causes the release of serotonin by disrupting vesicular storage of the neurotransmitter and reversing serotonin transporter function. The drug was withdrawn from the U.S. market in 1997 after reports of heart valve disease and pulmonary hypertension, including a condition known as cardiac fibrosis. It was subsequently withdrawn from other markets around the world. In this small exploratory and retrospective study, remarkably good results were reported on the use of fenfluramine as an add-on medication for controlling seizures in patients with the Dravet syndrome. The side effects were rare and nonserious and did not result in termination of the treatment. It is possible that this drug may have anticonvulsive effects for other severe epilepsy syndromes, especially in those characterized by photosensitive or induced seizures.

Class (Stereo):
CHEMICAL (RACEMIC)



Clorazepate is a water-soluble benzodiazepine derivative effective in the treatment of anxiety. It has also muscle relaxant and anticonvulsant actions. Studies in healthy men have shown that clorazepate dipotassium has depressant effects on the central nervous system. clorazepate is a prodrug since orally administered it is rapidly decarboxylated to form nordiazepam, there is essentially no circulating parent drug. Nordiazepam positively modulates GABAA receptors to produce anxiolytic and anticonvulsant effects.
Status:
First approved in 1971

Class (Stereo):
CHEMICAL (ABSOLUTE)



Cephalexin is a semisynthetic cephalosporin antibiotic intended for oral administration. In vitro tests demonstrate that the cephalosporins are bactericidal because of their inhibition of cell-wall synthesis. Cephalexin has been shown to be active against most strains of the following microorganisms both in vitro: Staphylococcus aureus (including penicillinase-producing strains), Streptococcus pneumoniae (penicillin-susceptible strains), Streptococcus pyogenes, Escherichia coli, Haemophilus influenzae, Klebsiella pneumoniae, Moraxella (Branhamella) catarrhalis, Proteus mirabilis. Cephalexin is indicated for the treatment of the respiratory tract, skin and skin structure, bone and genitourinary tract infections when caused by susceptible strains of the designated microorganisms.
Status:
First approved in 1971

Class (Stereo):
CHEMICAL (ABSOLUTE)



Fluocinonide is a potent glucocorticoid steroid used topically as anti-inflammatory agent for the treatment of skin disorders such as eczema. It relieves itching, redness, dryness, crusting, scaling, inflammation, and discomfort. Fluocinonide binds to the cytosolic glucocorticoid receptor. After binding the receptor the newly formed receptor-ligand complex translocates itself into the cell nucleus, where it binds to many glucocorticoid response elements (GRE) in the promoter region of the target genes. The DNA bound receptor then interacts with basic transcription factors, causing the increase in expression of specific target genes. The anti-inflammatory actions of corticosteroids are thought to involve lipocortins, phospholipase A2 inhibitory proteins which, through inhibition arachidonic acid, control the biosynthesis of prostaglandins and leukotrienes. Specifically glucocorticoids induce lipocortin-1 (annexin-1) synthesis, which then binds to cell membranes preventing the phospholipase A2 from coming into contact with its substrate arachidonic acid. This leads to diminished eicosanoid production. Cyclooxygenase (both COX-1 and COX-2) expression is also suppressed, potentiating the effect. In another words, the two main products in inflammation Prostaglandins and Leukotrienes are inhibited by the action of Glucocorticoids. Glucocorticoids also stimulate the lipocortin-1 escaping to the extracellular space, where it binds to the leukocyte membrane receptors and inhibits various inflammatory events: epithelial adhesion, emigration, chemotaxis, phagocytosis, respiratory burst and the release of various inflammatory mediators (lysosomal enzymes, cytokines, tissue plasminogen activator, chemokines etc.) from neutrophils, macrophages and mastocytes. Additionally the immune system is suppressed by corticosteroids due to a decrease in the function of the lymphatic system, a reduction in immunoglobulin and complement concentrations, the precipitation of lymphocytopenia, and interference with antigen-antibody binding. Like other glucocorticoid agents Fluocinolone acetonide acts as a physiological antagonist to insulin by decreasing glycogenesis (formation of glycogen). It also promotes the breakdown of lipids (lipolysis), and proteins, leading to the mobilization of extrahepatic amino acids and ketone bodies. This leads to increased circulating glucose concentrations (in the blood). There is also decreased glycogen formation in the liver. Fluocinonide is used for the relief of the inflammatory and pruritic manifestations of corticosteroid-responsive dermatoses. Fluocinonide is marketed under the names Fluonex, Lidex, Lidex-E, Lonide, Lyderm, and Vanos.
Alitretinoin, or 9-cis-retinoic acid, is a form of vitamin A. It is also used in medicine as an antineoplastic (anti-cancer) agent developed by Ligand Pharmaceuticals. Alitretinoin (9-cis-retinoic acid) is a naturally-occurring endogenous retinoid indicated for topical treatment of cutaneous lesions in patients with AIDS-related Kaposi's sarcoma. Alitretinoin inhibits the growth of Kaposi's sarcoma (KS) cells in vitro. Alitretinoin binds to and activates all known intracellular retinoid receptor subtypes (RARa, RARb, RARg, RXRa, RXRb and RXRg). Once activated these receptors function as transcription factors that regulate the expression of genes that control the process of cellular differentiation and proliferation in both normal and neoplastic cells. In the United States, topical alitretinoin (in the form of a gel; trade name Panretin) is indicated for the treatment of skin lesions in AIDS-related Kaposi's sarcoma.
Status:
First approved in 1970

Class (Stereo):
CHEMICAL (ACHIRAL)



Flavoxate is a drug, indicated for symptomatic relief of dysuria, urgency, nocturia, suprapubic pain, frequency and incontinence as may occur in cystitis, prostatitis, urethritis, urethrocystitis/urethrotrigonitis. Flavoxate is not indicated for definitive treatment, but is compatible with drugs used for the treatment of urinary tract infections. It was approved for use in the United States in 1970 and continues to be used. Drug acts as a direct antagonist at muscarinic acetylcholine receptors in cholinergically innervated organs. Its anticholinergic-parasympatholytic action reduces the tonus of smooth muscle in the bladder, effectively reducing the number of required voids, facilitating increased volume per void. Common side effects are those of parasympathetic stimulation and include dryness of the mouth and eyes, decreased sweating, headache, visual blurring, constipation, urinary retention, impotence, tachycardia and palpitations, anxiety, restlessness and in some instances agitation and delusions.
Droperidol produces marked tranquilization and sedation. It allays apprehension and provides a state of mental detachment and indifference while maintaining a state of reflex alertness. Droperidol produces an antiemetic effect as evidenced by the antagonism of apomorphine in dogs. It lowers the incidence of nausea and vomiting during surgical procedures and provides antiemetic protection in the postoperative period. Droperidol potentiates other CNS depressants. It produces mild alpha-adrenergic blockade, peripheral vascular dilatation and reduction of the pressor effect of epinephrine. It can produce hypotension and decreased peripheral vascular resistance and may decrease pulmonary arterial pressure (particularly if it is abnormally high). It may reduce the incidence of epinephrine-induced arrhythmias, but it does not prevent other cardiac arrhythmias. The exact mechanism of action is unknown, however, droperidol causes a CNS depression at subcortical levels of the brain, midbrain, and brainstem reticular formation. It may antagonize the actions of glutamic acid within the extrapyramidal system. It may also inhibit cathecolamine receptors and the reuptake of neurotransmiters and has strong central antidopaminergic action and weak central anticholinergic action. It can also produce ganglionic blockade and reduced affective response. The main actions seem to stem from its potent Dopamine (2) receptor antagonism with minor antagonistic effects on alpha-1 adrenergic receptors as well. Droperidol is used to produce tranquilization and to reduce the incidence of nausea and vomiting in surgical and diagnostic procedures.

Class (Stereo):
CHEMICAL (ACHIRAL)

Targets:


Deferoxamine (brand name Desferal) an iron chelator, is a drug for the treatment of acute iron intoxication and of chronic iron overload due to transfusion-dependent anemias. Deferoxamine chelates iron by forming a stable complex that prevents the iron entering into further chemical reactions. However, drug may cause hypersensitivity reactions, systemic allergic reactions, and cardiovascular, hematologic and neurological adverse reactions. Serious adverse reactions include significant hypotension and marked body weight loss. Principally plasma enzymes metabolize deferoxamine, but the pathways have not yet been defined. The chelate is readily soluble in water and passes easily through the kidney, giving the urine a characteristic reddish color. Some is also excreted in the feces via the bile.
Ethacrynic acid is a monosulfonamyl loop or high ceiling diuretic. Ethacrynic acid acts on the ascending limb of the loop of Henle and on the proximal and distal tubules. Urinary output is usually dose dependent and related to the magnitude of fluid accumulation. Water and electrolyte excretion may be increased several times over that observed with thiazide diuretics, since ethacrynic acid inhibits reabsorption of a much greater proportion of filtered sodium than most other diuretic agents. Therefore, ethacrynic acid is effective in many patients who have significant degrees of renal insufficiency. Ethacrynic acid has little or no effect on glomerular filtration or on renal blood flow, except following pronounced reductions in plasma volume when associated with rapid diuresis. Ethacrynic acid inhibits symport of sodium, potassium, and chloride primarily in the ascending limb of Henle, but also in the proximal and distal tubules. This pharmacological action results in excretion of these ions, increased urinary output, and reduction in extracellular fluid. Diuretics also lower blood pressure initially by reducing plasma and extracellular fluid volume; cardiac output also decreases, explaining its antihypertensive action. Eventually, cardiac output returns to normal with an accompanying decrease in peripheral resistance. Its mode of action does not involve carbonic anhydrase inhibition. Ethacrynic acid is indicated for the treatment of high blood pressure and edema caused by diseases like congestive heart failure, liver failure, and kidney failure.

Class (Stereo):
CHEMICAL (ACHIRAL)



Mefenamic acid is a non-steroidal anti-inflammatory agent with analgesic, anti-inflammatory, and antipyretic properties. It is used for the treatment of mild to moderate pain, including menstrual pain, inflammation, and fever. Clinical use of mefenamic acid has generally declined in an era where other NSAID use has flourished. While having modes of action and general toxicities similar to other NSAIDs, mefenamic acid, as a member of the fenamates, nevertheless possesses some unique in vitro effects that have the potential to distinguish this agent from others. Use of this drug remains relevant for pain syndromes and some gynecological disorders, albeit with considerable competition from other NSAIDs. New basic science has considerably improved the understanding of the biochemistry of mefenamic acid. As well as maintaining its use in traditional settings, there is a tremendous potential for expanding the application of mefenamic acid to niche roles. Mefenamic acid binds the prostaglandin synthetase receptors COX-1 and COX-2, inhibiting the action of prostaglandin synthetase. Mefenamic acid concentrations reached during therapy have produced in vivo effects. Prostaglandins sensitize afferent nerves and potentiate the action of bradykinin in inducing pain in animal models. Prostaglandins are mediators of inflammation. Because mefenamic acid is an inhibitor of prostaglandin synthesis, its mode of action may be due to a decrease of prostaglandins in peripheral tissues.