{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Search results for methicillin in Relationship Comments (approximate match)
Status:
Other
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Formononetin, an isoflavone, derived from Astragalus membranaceus, possesses the potential to reduce obesity and associated metabolic disorders. Formononetin displays estrogenic properties and induces angiogenesis activities. It regulates adipocyte thermogenesis as a partial PPARγ agonist and produces proangiogenesis effects through estrogen receptor alpha (ERα)-enhanced ROCK-II signaling pathways, by direct binding to the ligand-binding domain (LBD) of ERα. Besides, was shown, that formononetin inhibits HMGB1 release by decreasing HMGB1 acetylation via upregulating SIRT1 in a PPARδ-dependent manner and the identification of this process may help to treat inflammation-related disorders.
Status:
Other
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Liquiritigenin is a plant-derived flavonoid isolated from the roots of plants belonging to licorice species (Glycyrrhiza uralensis, Glycyrrhiza glabra, Glycyrrhiza inflate etc) and is available in common foods and alternative medicine. Liquiritigenin is one of the major active compounds of MF101, selective ER-beta agonist herbal extract of 22 botanical ingredients originally tested for reducing the frequency and severity of menopausal hot flashes. At sufficient concentrations, liquiritigenin is also a partial agonist of ER-alpha but has a 20-fold higher affinity for ER-beta than for ER-alpha. Several studies showed that liquiritigenin exerts cytoprotective effects against heavy metal-induced toxicity in cultured hepatocytes, has protective effects against liver injuries induced by acetaminophen and buthione sulfoximine in rats and has an anti-inflammatory effect in macrophages suggesting its potential therapeutic use for liver diseases. Liquiritigenin inhibits the activity of MAO A and B in rat brain mitochondria and displayed favorable properties as a specific transient receptor potential melastatin 3 (TRPM3) blocker. Anti-hepatocellular carcinoma effects of liquiritigenin are related to its modulation of the activations of mitogen-activated protein kinase (MAPKs) and was discovered, that this compound is a potential therapeutic agent for hepatocellular carcinoma treatment.
Status:
Possibly Marketed Outside US
Source:
21 CFR 348
(2009)
Source URL:
First approved in 2009
Source:
21 CFR 352
Source URL:
Class:
STRUCTURALLY DIVERSE
Status:
Possibly Marketed Outside US
First approved in 1987
Source:
21 CFR 341
Source URL:
Class:
STRUCTURALLY DIVERSE