U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 11 - 20 of 291 results

Efavirenz (brand names Sustiva® and Stocrin®) is a non-nucleoside reverse transcriptase inhibitor (NNRTI) and is used as part of highly active antiretroviral therapy (HAART) for the treatment of a human immunodeficiency virus (HIV) type 1. For HIV infection that has not previously been treated, efavirenz and lamivudine in combination with zidovudine or tenofovir is the preferred NNRTI-based regimen. Efavirenz is also used in combination with other antiretroviral agents as part of an expanded postexposure prophylaxis regimen to prevent HIV transmission for those exposed to materials associated with a high risk for HIV transmission.
Telmisartan is an orally active nonpeptide angiotensin II antagonist that acts on the AT1 receptor subtype. It was discovered by Boehringer Ingelheim and launched in 1999 as Micardis. It has the highest affinity for the AT1 receptor among commercially available ARBS and has minimal affinity for the AT2 receptor. New studies suggest that telmisartan may also have PPARγ agonistic properties that could potentially confer beneficial metabolic effects, as PPARγ is a nuclear receptor that regulates specific gene transcription, and whose target genes are involved in the regulation of glucose and lipid metabolism, as well as anti-inflammatory responses. This observation is currently being explored in clinical trials. Angiotensin II is formed from angiotensin I in a reaction catalyzed by angiotensin-converting enzyme (ACE, kininase II). Angiotensin II is the principal pressor agent of the renin-angiotensin system, with effects that include vasoconstriction, stimulation of synthesis and release of aldosterone, cardiac stimulation, and renal reabsorption of sodium. Telmisartan works by blocking the vasoconstrictor and aldosterone secretory effects of angiotensin II. Telmisartan interferes with the binding of angiotensin II to the angiotensin II AT1-receptor by binding reversibly and selectively to the receptors in vascular smooth muscle and the adrenal gland. As angiotensin II is a vasoconstrictor, which also stimulates the synthesis and release of aldosterone, blockage of its effects results in decreases in systemic vascular resistance. Telmisartan does not inhibit the angiotensin converting enzyme, other hormone receptors, or ion channels. Studies also suggest that telmisartan is a partial agonist of PPARγ, which is an established target for antidiabetic drugs. This suggests that telmisartan can improve carbohydrate and lipid metabolism, as well as control insulin resistance without causing the side effects that are associated with full PPARγ activators. Used alone or in combination with other classes of antihypertensives for the treatment of hypertension. Telmisartan is used in the treatment of diabetic nephropathy in hypertensive patients with type 2 diabetes mellitus, as well as the treatment of congestive heart failure (only in patients who cannot tolerate ACE inhibitors).
Irbesartan is an angiotensin receptor blocker (ARB) used mainly for the treatment of hypertension. It was developed by Sanofi Research (now part of Sanofi-Aventis). It is marketed under the trade names Aprovel, Karvea, and Avapro. AVAPRO is an angiotensin II receptor blocker (ARB) indicated for: • Treatment of hypertension, to lower blood pressure. Lowering blood pressure reduces the risk of fatal and nonfatal cardiovascular events, primarily strokes and myocardial infarctions. • Treatment of diabetic nephropathy in hypertensive patients with type 2 diabetes, an elevated serum creatinine, and proteinuria. Irbesartan is a specific competitive antagonist of AT1 receptors with a much greater affinity (more than 8500-fold) for the AT1 receptor than for the AT2 receptor and no agonist activity.
Cabergoline is a long-acting dopamine receptor agonist with a high affinity for D2 receptors. Results of in vitro studies demonstrate that cabergoline exerts a direct inhibitory effect on the secretion of prolactin by rat pituitary lactotrophs. It is FDA approved for the treatment of hyperprolactinemic disorders, either idiopathic or due to pituitary adenomas. Common adverse reactions include constipation, nausea, dizziness, headache and fatigue. Cabergoline should not be administered concurrently with D-antagonists, such as phenothiazines, butyrophenones, thioxanthenes, or metoclopramide.
Status:
First approved in 1994
Source:
IOBENGUANE SULFATE I 131 by PHARMALUCENCE
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)


Iobenguane I-131 is a radioactive therapeutic agent. The drug contains radioactive isotope I-131, which decays by electron emission with a half-life of about 8 days. By the chemical structure, iobenguane is similar to the neurotransmitter norepinephrine and is subject to the same uptake and regulation pathways. After intravenous administration, iobenguane I-131 accumulates within pheochromocytoma and paraganglioma cells, and radiation from the radioactive decay causes cell death and tumor necrosis. Iobenguane I-131 was approved by the FDA for the treatment of adult and pediatric patients with iobenguane scan positive, unresectable, locally advanced or metastatic pheochromocytoma or paraganglioma who require systemic anticancer therapy. Iobenguane I-131 is investigated in clinical trials as a treatment of neuroblastoma, ganglioneuroblastoma and other tumors of neuroendocrinal origin.
Phenylacetic acid (abr. PAA and synonyms are: α-toluic acid, benzeneacetic acid, alpha tolylic acid, 2-phenylacetic acid, β-phenylacetic acid) is an organic compound containing a phenyl functional group and acarboxylic acid functional group. Because it is used in the illicit production of phenylacetone (used in the manufacture of substituted amphetamines), it is subject to controls in countries including the United States and China Phenylacetic acid is used in some perfumes, possessing a honey-like odor in low concentrations, and is also used in penicillin G production. It is also employed to treat type II hyperammonemia to help reduce the amounts of ammonia in a patient's bloodstream by forming phenylacetyl-CoA, which then reacts with nitrogen-rich glutamine to form phenylacetylglutamine. This compound is then secreted by the patient's body. In Phase 2 of clinical research it investigated in the treatment of Brain and Central Nervous System Tumors.
The isolation and naming of ergotamine by Stoll occurred in 1925 but the complete elucidation of structure was not achieved until 1951, with synthesis following some 10 years later. Current sources of ergotamine include the isolation from field ergot and fermentation broth, as well as synthesis via coupling of (+)-lysergic acid with the appropriate synthetic peptidic moiety. Ergotamine was introduced into world commerce in 1921, and is currently marketed as its water soluble tartrate salt. Ergotamine is a partial agonist at various tryptaminergic receptors (including the serotonin receptor [5-HT2]) and at various α-adrenergic receptors in blood vessels and various smooth muscles. It is likely that the major activity of ergotamine and related alkaloids is one of agonism at the 5-HT1B/1D receptors, just as with the “triptan” antimigraine compounds. FDA-labeled indications for ergotamine tartrate are in the abortion or prevention of vascular headaches, such as migraine, migraine variant, cluster headache, and histaminic cephalalgia.
Status:
US Approved OTC
Source:
21 CFR 341.20(a)(3) cough/cold:nasal decongestant pseudoephedrine sulfate
Source URL:
First approved in 1961

Class (Stereo):
CHEMICAL (ABSOLUTE)



Pseudoephedrine is a sympathomimetic drug. Pseudoephedrine acts as an adrenomimetic and inhibitor of monoamine transporters. Ephedra sinica, a species of ephedra (ma huang), contains ephedrine and pseudoephedrine. Ephedra has been found to stimulate the nervous system, increase airflow into the lungs and constrict blood vessels. In combination with caffeine, ephedra appears to cause weight loss. Pseudoephedrine is a decongestant that shrinks blood vessels in the nasal passages. Pseudoephedrine is used to relieve nasal or sinus congestion caused by the common cold, sinusitis, and hay fever and other respiratory allergies.
Status:
US Approved OTC
Source:
21 CFR 333.210(d) antifungal povidone-iodine
Source URL:
First marketed in 1921

Class (Stereo):
CHEMICAL (ACHIRAL)

Conditions:

Tetraglycine hydroperiodide is an iodine-containing chemical, used for water purification. Tetraglycine hydroperiodide is marketed in tablets; each tablet effectively disinfects 1 liter of clear water or 0.5 liter of tainted water by releasing approximately 8 mg free iodine. It requires approximately 30 minutes to inactivate target microorganisms and make water bacteriologically suitable for drinking. To remove iodine taste, a vitamin C pill is added to the kit.
Exisulind (tentative trade name Aptosyn) is an antineoplastic agent, which was originally developed by Cell Pathways. This drug is an inhibitor of phosphodiesterase (PDE) isozymes: PDE5 and PDE4. Inhibition of PDE5 appears to be pharmacologically relevant, which leads to increase cGMP and activate protein kinase G at doses that induce apoptosis, whereas cyclic AMP levels were not changed. Exisulind has been in phase III clinical trials for the treatment of Non-Small Cell Lung Cancer and for the treatment of polyps in patients who have familial adenomatous polyposis (Colorectal Cancer and Small Intestine Cancer). In addition, this drug was in phase II/III for the treatment of Prostate Cancer, however, there studies have been discontinued.

Showing 11 - 20 of 291 results