{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Search results for m root_codes_comments in Code Comments (approximate match)
Status:
Other
Class (Stereo):
CHEMICAL (RACEMIC)
Status:
Possibly Marketed Outside US
Source:
Derma Lip Plumper Balm by Pella Pharmaceuticals Co. ltd
(2014)
Source URL:
First approved in 1981
Source:
ANDA086414
Source URL:
Class:
MIXTURE
Status:
US Approved Rx
(2022)
Source:
NDA216472
(2022)
Source URL:
First approved in 1995
Source:
NDA020597
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Latanoprostene Bunod (LBN) is a topical ophthalmic therapeutic for the reduction of intraocular pressure (IOP) in patients with open-angle glaucoma or ocular hypertension. There is no cure for glaucoma and therapeutic management is predominantly focused on minimizing disease progression and clinical sequelae via the reduction and maintenance of appropriate target IOPs. Latanoprostene Bunod is thought to lower intraocular pressure via a dual mechanism of action since the medication is metabolized into two relevant moieties upon administration: latanoprost acid, and butanediol mononitrate. As a prostaglandin F2-alpha analog, the latanoprost acid moiety operates as a selective PGF2-alpha (FP) receptor agonist. Since FP receptors occur in the ciliary muscle, ciliary epithelium, and sclera the latanoprost acid moiety primarily acts in the uveoscleral pathway where it increases the expression of matrix metalloproteinases (MMPs) like MMP-1, -3, and -9 which promote the degradation of collagen types I, III, and IV in the longitudinal bundles of the ciliary muscle and surrounding sclera. The resultant extracellular matrix remodeling of the ciliary muscle consequently produces reduced outflow resistance via increased permeability and increased aqueous humor outflow through the uveoscleral route. Conversely, the butanediol mononitrate undergoes further metabolism to NO and an inactive 1,4-butanediol moiety. As a gas that can freely diffuse across plasma membranes, it is proposed that the relaxing effect of NO to induce reductions in the cell volume and contractility of vascular smooth muscle-like cells is dependent upon activation of the sGC/cGMP/PKG cascade pathway. NO released from butanediol mononitrate consequently enters the cells of the TM and an inner wall of SC, causing decreases in myosin light chain-2 phosphorylation, increased phosphorylation of large-conductance calcium-activated potassium (BKCa) channels, and a subsequent efflux of potassium ions through such BKCa channels. All of these changes serve to decrease the cell contractility and volume, as well as to rearrange the actin cytoskeleton of the TM and SC cells. These biomechanical changes ultimately allow for enhanced conventional outflow of aqueous humor.
Status:
Investigational
Source:
NCT01855230: Phase 2 Interventional Completed COPD
(2013)
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
1,1-DIETHYL-4-PHENYLHOMOPIPERAZINIUM (ASM-024), a small synthetic molecule in clinical stage development, has shown activity at the level of nicotinic receptors and possibly at the muscarinic level and presents anti-inflammatory and bronchodilator properties. Aerosolized ASM-024 reduces airway resistance in mice and promotes in-vitro relaxation of tracheal and bronchial preparations from animal and human tissues. ASM-024 increased in vitro relaxation response to maximally effective concentration of short-acting beta-2 agonists in dog and human bronchi. ASM-024 is able to activate the α7 nAChR channel opening in the presence of the positive allosteric modulator (PNU-120596), indicating that ASM-024 behaves as a ‘silent agonist’ that places the receptor in a desensitized state. Compounds with similar properties have been shown to induce signal transduction pathways independently of ion channel activation. ASM-024 has demonstrated an antagonist effect on ACH-evoked activation at the M1, M2 and M3 muscarinic receptors expressed in Xenopus oocytes. A comprehensive nonclinical safety program was conducted with ASM-024 including pharmacokinetic and metabolism studies, safety pharmacology studies, toxicology and genotoxicity studies. In all, seven clinical studies were completed to evaluate the safety, tolerability and clinical activity of ASM-024. Three Phase I and four Phase II clinical trials were conducted on healthy subjects and patients with mild allergic asthma, stable moderate asthma and subjects with COPD. Altogether, ASM-024 has been safely administered to more than 200 subjects via the oral and inhalation delivery, i.e. nebulized solution and dry powder inhalation. However, the outcome of two phase II pilot studies in patients failed to demonstrate sufficient efficacy of ASM-024 in asthma and COPD. Thus, further work on ASM-024 on pulmonary diseases was stopped. In light of the findings that ASM‐024 blocks both nicotinic and muscarinic receptor activation, it is believed that ASM-024 will be a potent inhibitor of cell growth. These properties may have the potential to reduce the development or progression of tumors expressing these receptors.
Based on a greater knowledge of the unique pharmacological mechanisms of action of ASM-024 developed at Asmacure, Odan is exploring the potential therapeutic role of ASM-024 in the treatment of selected oncology diseases. These studies include the in vitro anti-proliferative properties against a panel of various cancer cell lines and the in vivo anti-tumor activity in selected mouse models. Overall, the most significant inhibitory effect on in vitro cell proliferation was observed on the following cell lines: human lung adenocarcinoma, breast cancer, brain neuroblastoma, prostate adenocarcinoma and malignant melanoma. Preliminary data from a mouse model of lung carcinoma (Lewis Lung Cancer) using a slow infusion delivery method that ASM-024 treatment reduces the size and number of tumor nodules in the lung. In addition the potential therapeutic synergism between ASM-024 with commonly used chemotherapeutic agents will be investigated. Cisplatin and the taxanes (e.g. paclitaxel or Taxol) are commonly used chemotherapeutic agents, but their use is limited by their toxicity rates and innate or acquired resistance to these drugs. The concomitant effect of ASM-024 and cisplatin or Taxol on the proliferation of tumor cells will be assessed in vitro and potentially in in vivo mouse models. In the long term, Odan will consider to pursue the development of ASM-024 in a solution formulation administered intravenously (IV) in conjunction with the commonly-used cancer chemotherapeutic agents, for the growth inhibition and possibly regression of tumors in cancer patients.