U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 11 - 20 of 23 results

Mrtoprolol is a beta-adrenergic receptor blocking agent. In vitro and in vivo animal studies have shown that it has a preferential effect on beta-1 adrenoreceptors, chiefly located in cardiac muscle. Clinical pharmacology studies have confirmed the beta-blocking activity of metoprolol in man, as shown by (1) reduction in heart rate and cardiac output at rest and upon exercise, (2) reduction of systolic blood pressure upon exercise, (3) inhibition of isoproterenol-induced tachycardia, and (4) reduction of reflex orthostatic tachycardia. Mrtoprolol is indicated for the treatment of hypertension, angina pectoris and myocardial infarction
Timolol is the non-selective Beta antagonist used as eye drops to treat increased pressure inside the eye such as in ocular hypertension and glaucoma. Timolol is also used for high blood pressure, chest pain due to insufficient blood flow to the heart, to prevent further complications after a heart attack, and to prevent migraines. Timolol is a beta1 and beta2 (non-selective) adrenergic receptor antagonist that does not have significant intrinsic sympathomimetic, direct myocardial depressant, or local anesthetic (membrane-stabilizing) activity. Timolol, when applied topically on the eye, has the action of reducing elevated, as well as normal intraocular pressure, whether or not accompanied by glaucoma. Elevated intraocular pressure is a major risk factor in the pathogenesis of glaucomatous visual field loss and optic nerve damage. The precise mechanism of the ocular hypotensive action of Timolol is not clearly established at this time. Tonography and fluorophotometry studies of the timolol maleate ophthalmic solution in man suggest that its predominant action may be related to the reduced aqueous formation. However, in some studies, a slight increase in outflow facility was also observed. In a study of plasma drug concentration in six subjects, the systemic exposure to timolol was determined following once daily administration of Timolol Maleate Ophthalmic Gel Forming Solution 0.5% in the morning. The mean peak plasma concentration following this morning dose was 0.28 ng/mL. Side effects, when given in the eye, include burning sensation, eye redness, superficial punctate keratopathy, corneal numbness.
Propranolol is a nonselective, beta-adrenergic receptor-blocking agent possessing no other autonomic nervous system activity. At dosages greater than required for beta blockade, propranolol also exerts a quinidine-like or anesthetic-like membrane action, which affects the cardiac action potential. Among the factors that may be involved in contributing to the antihypertensive action include: (1) decreased cardiac output, (2) inhibition of renin release by the kidneys, and (3) diminution of tonic sympathetic nerve outflow from vasomotor centers in the brain. Although total peripheral resistance may increase initially, it readjusts to or below the pretreatment level with chronic use of propranolol. Effects of propranolol on plasma volume appear to be minor and somewhat variable. In angina pectoris, propranolol generally reduces the oxygen requirement of the heart at any given level of effort by blocking the catecholamine-induced increases in the heart rate, systolic blood pressure, and the velocity and extent of myocardial contraction. Propranolol may increase oxygen requirements by increasing left ventricular fiber length, end diastolic pressure, and systolic ejection period. The net physiologic effect of beta-adrenergic blockade is usually advantageous and is manifested during exercise by delayed onset of pain and increased work capacity. Propranolol exerts its antiarrhythmic effects in concentrations associated with beta-adrenergic blockade, and this appears to be its principal antiarrhythmic mechanism of action. In dosages greater than required for beta blockade, propranolol also exerts a quinidine-like or anesthetic-like membrane action, which affects the cardiac action potential. The significance of the membrane action in the treatment of arrhythmias is uncertain. The mechanism of the anti-migraine effect of propranolol has not been established. Propranolol is indicated in the management of hypertension. It may be used alone or used in combination with other antihypertensive agents, particularly a thiazide diuretic. Also is indicated to decrease angina frequency and increase exercise tolerance in patients with angina pectoris; for the prophylaxis of common migraine headache. In addition, is used to improve NYHA functional class in symptomatic patients with hypertrophic subaortic stenosis. Due to the high penetration across the blood–brain barrier, propranolol causes sleep disturbances such as insomnia and vivid dreams, and nightmares. Dreaming (rapid eye movement sleep, REM) was reduced and increased awakening.
Status:
US Previously Marketed
First approved in 1987

Class (Stereo):
CHEMICAL (ABSOLUTE)


Conditions:

Penbutolol is a new beta-adrenergic blocking drug approved for the treatment of hypertension. It is a noncardioselective beta-blocker and has intrinsic sympathomimetic activity. Penbutolol is marketed under the trade names Levatol, Levatolol, Lobeta, Paginol, Hostabloc, Betapressin. Penbutolol acts on the β1 adrenergic receptors in both the heart and the kidney. When β1 receptors are activated by catecholamines, they stimulate a coupled G protein that leads to the conversion of adenosine triphosphate (ATP) to cyclic adenosine monophosphate (cAMP). The increase in cAMP leads to activation of protein kinase A (PKA), which alters the movement of calcium ions in heart muscle and increases the heart rate. Penbutolol blocks the catecholamine activation of β1 adrenergic receptors and decreases heart rate, which lowers blood pressure. Levatol (Penbutolol) is indicated in the treatment of mild to moderate arterial hypertension. It may be used alone or in combination with other antihypertensive agents, especially thiazide-type diuretics.
Status:
Possibly Marketed Outside US
Source:
BYSTOLIC by Janssen, L.P.
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)


Conditions:

Marketed under the brand name BYSTOLIC, Nebivolol is indicated for the treatment of hypertension, to lower blood pressure. Nebivolol is a racemic mixture containing equal amounts of two enantiomers, d-nebivolol and l-nebivolol (Levonebivolol). It is a selective β1-adrenergic antagonist with vasodilating properties. The d-enantiomer provides selective β1-adrenergic receptor blockade, whereas l-nebivolol possesses vasodilating properties thought to be attributable to nitric oxide modulation via the L-argininenitric oxide pathway. dl-nebivolol exerts an antithrombotic activity by stimulating the formation of NO by platelets, and that this effect is generated by its l-enantiomer, whereas the d-enantiomer exerts a weak antiplatelet effect because of β-adrenergic receptor-independent stimulation of adenyly cyclase. L-nebivolol had a protective effect against both endothelial dysfunction of the mesenteric artery and ileal injury induced by intestinal I/R; however, similar effects were not observed for racemic nebivolol. d-Nebivolol (SRRR) and nebivolol showed combined high affinity and selectivity for inhibition of beta 1-adrenergic receptor coupled accumulation of cAMP in CHO-Hu beta 1 cells (0.41 and 0.42 nM for d-nebivolol and nebivolol, respectively). l-Nebivolol (RSSS) was 1460 times less potent than d-nebivolol in CHO-Hu beta 1 cells.
mixture
Status:
Possibly Marketed Outside US
Source:
Octaplasma by Octapharma Pharmazeutika Produktionsges M B H [Canada]
Source URL:

Class:
MIXTURE

Status:
Investigational
Source:
NCT03534063: Not Applicable Interventional Completed Pain, Postoperative
(2018)
Source URL:

Class:
PROTEIN

Showing 11 - 20 of 23 results