U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 11 - 20 of 181 results

Furosemide, a sulfonamide-type loop diuretic structurally related to bumetanide, is used to manage hypertension and edema associated with congestive heart failure, cirrhosis, and renal disease, including the nephrotic syndrome. Furosemide inhibits water reabsorption in the nephron by blocking the sodium-potassium-chloride cotransporter (NKCC2) in the thick ascending limb of the loop of Henle. This is achieved through competitive inhibition at the chloride binding site on the cotransporter, thus preventing the transport of sodium from the lumen of the loop of Henle into the basolateral interstitium. Consequently, the lumen becomes more hypertonic while the interstitium becomes less hypertonic, which in turn diminishes the osmotic gradient for water reabsorption throughout the nephron. Because the thick ascending limb is responsible for 25% of sodium reabsorption in the nephron, furosemide is a very potent diuretic. Furosemide is sold under the brand name Lasix among others.
Doxapram is an analeptic agent (a stimulant of the central nervous system). The respiratory stimulant action is manifested by an increase in tidal volume associated with a slight increase in respiratory rate. A pressor response may result following doxapram administration. Provided there is no impairment of cardiac function, the pressor effect is more marked in hypovolemic than in normovolemic states. The pressor response is due to the improved cardiac output rather than peripheral vasoconstriction. Following doxapram administration, an increased release of catecholamines has been noted. Doxapram produces respiratory stimulation mediated through the peripheral carotid chemoreceptors. It is thought to stimulate the carotid body by inhibiting certain potassium channels. Used as temporary measure in hospitalized patients with acute respiratory insufficiency superimposed on chronic obstructive pulmonary disease.
Lincomycin (LINCOCIN®) is an antibiotic produced by Streptomyces lincolnensis (Streptomycetaceae family). It has been used in the treatment of staphylococcal, streptococcal, and Bacteroides fragilis infections. Lincomycin (LINCOCIN®) inhibits protein synthesis in susceptible bacteria by binding to the 50S subunits of bacterial ribosomes and preventing peptide bond formation upon transcription. It is usually considered bacteriostatic, but may be bactericidal in high concentrations or when used against highly susceptible microorganisms.
Ampicillin is a penicillin beta-lactam antibiotic. The following gram-negative and gram-positive bacteria have been shown in in vitro studies to be susceptible to ampicillin: Hemolytic and nonhemolytic streptococci, Streptococcus pneumoniae, Nonpenicillinase-producing staphylococci, Clostridium spp., B. anthracis, Listeria monocytogenes, most strains of enterococci, H. influenzae, N. gonorrhoeae, N. meningitidis, Proteus mirabilis, many strains of Salmonella, Shigella, and E. coli. Ampicillin is indicated in the treatment of bacterial meningitis, septicemia, endocarditis, urinary tract, gastrointestinal, respiratory tract infections caused by susceptible strains of the designated organisms.
Mepivicaine is a local anesthetic of the amide type. Mepivicaine as a reasonably rapid onset and medium duration and is known by the proprietary names as Carbocaine and Polocaine. Mepivicaine is used in local infiltration and regional anesthesia. Systemic absorption of local anesthetics produces effects on the cardiovascular and central nervous systems. At blood concentrations achieved with normal therapeutic doses, changes in cardiac conduction, excitability, refractoriness, contractility, and peripheral vascular resistance are minimal. Mepivicaine is used for production of local or regional analgesia and anesthesia by local infiltration, peripheral nerve block techniques, and central neural techniques including epidural and caudal blocks.
Dexamethasone is an anti-inflammatory agent that is FDA approved for the treatment of many conditions, including rheumatic problems, a number of skin diseases, severe allergies, asthma, chronic obstructive lung disease, croup, brain swelling and others. Dexamethasone is a glucocorticoid agonist. Unbound dexamethasone crosses cell membranes and binds with high affinity to specific cytoplasmic glucocorticoid receptors. Adverse reactions are: Glaucoma with optic nerve damage, visual acuity and field defects; cataract formation; secondary ocular infection following suppression of host response; and perforation of the globe may occur; muscle weakness; osteoporosis and others. Aminoglutethimide may diminish adrenal suppression by corticosteroids. Macrolide antibiotics have been reported to cause a significant decrease in corticosteroid clearance.
Methylprednisolone is a prednisolone derivative with similar anti-inflammatory and immunosuppressive action. It is adjunctive therapy for short-term administration in rheumatoid arthritis. It is indicated in the following conditions: endocrine disorders, rheumatic disorders, collagen diseases, allergic states etc. Methylprednisolone is marketed in the USA and Canada under the brand names Medrol and Solu-Medrol. Methylprednisolone is a GR receptor agonist.
Status:
First approved in 1957

Class (Stereo):
CHEMICAL (RACEMIC)


Conditions:

Methocarbamol is a central muscle relaxant for skeletal muscles, used to treat spasms. It is structurally related to guaifenesin. Methocarbamol's exact mechanism of causing skeletal muscle relaxation is unknown. It is thought to work centrally, perhaps by general depressant effects. It has no direct relaxant effects on striated muscle, nerve fibers, or the motor endplate. It will not directly relax contracted skeletal muscles. The drug has a secondary sedative effect. Methocarbamol is used for use as an adjunct to rest, physical therapy, and other measures for the relief of discomforts associated with acute, painful musculoskeletal conditions. Under the trade name Robaxin, Methocarbamol is marketed by Actient Pharmaceuticals in the United States and Pfizer in Canada.
Prochlorperazine is a piperazine phenothiazine antipsychotic which block postsynaptic mesolimbic dopaminergic receptors in the brain and has antiemetic effects by its antagonist actions in the D2 dopamine receptors in the chemoreceptor trigger zone. It also exhibits alpha-adrenergic blocking effect on α1 receptros and may depress the release of hypothalamic and hypophyseal hormones. Prochlorperazine is used for the control of severe nausea and vomiting, for the treatment of schizophrenia. Prochlorperazine is effective for the short-term treatment of generalized non-psychotic anxiety. Prochlorperazine may be an effective treatment of acute headaches and refractory chronic daily headache.

Showing 11 - 20 of 181 results