U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 11 - 20 of 123 results

Etiguanfacine, also known as SSP-1871, is an α2-adrenoreceptor agonist.
Status:

Class (Stereo):
CHEMICAL (MIXED)


Conditions:

Labetalol is a blocker of both alpha- and beta-adrenergic receptors that is used as an antihypertensive. It may be used alone or in combination with other antihypertensive agents, especially thiazide and loop diuretics. The capacity of labetalol HCl to block alpha receptors in man has been demonstrated by attenuation of the pressor effect of phenylephrine and by a significant reduction of the pressor response caused by immersing the hand in ice-cold water ("cold-pressor test"). Labetalol HCl's beta1-receptor blockade in man was demonstrated by a small decrease in the resting heart rate, attenuation of tachycardia produced by isoproterenol or exercise, and by attenuation of the reflex tachycardia to the hypotension produced by amyl nitrite. Beta2-receptor blockade was demonstrated by inhibition of the isoproterenol-induced fall in diastolic blood pressure. Both the alpha- and beta-blocking actions of orally administered labetalol HCl contribute to a decrease in blood pressure in hypertensive patients. Labetalol HCl consistently, in dose-related fashion, blunted increases in exercise-induced blood pressure and heart rate, and in their double product. The pulmonary circulation during exercise was not affected by labetalol HCl dosing. Single oral doses of labetalol HCl administered to patients with coronary artery disease had no significant effect on sinus rate, intraventricular conduction, or QRS duration. The atrioventricular (A-V) conduction time was modestly prolonged in two of seven patients. In another study, IV labetalol HCl slightly prolonged A-V nodal conduction time and atrial effective refractory period with only small changes in heart rate. The metabolism of labetalol is mainly through conjugation to glucuronide metabolites. These metabolites are present in plasma and are excreted in the urine and, via the bile, into the feces. Approximately 55% to 60% of a dose appears in the urine as conjugates or unchanged labetalol within the first 24 hours of dosing. Labetalol has been shown to cross the placental barrier in humans. Only negligible amounts of the drug crossed the blood-brain barrier in animal studies. Labetalol is approximately 50% protein bound. Neither hemodialysis nor peritoneal dialysis removes a significant amount of labetalol HCl from the general circulation.
Clonidine is a centrally acting α2 adrenergic agonist and imidazoline receptor agonist used to treat high blood pressure, attention deficit hyperactivity disorder, anxiety disorders, tic disorders, withdrawal (from either alcohol, opioids, or smoking), migraine, menopausal flushing, diarrhea, and certain pain conditions. Clonidine treats high blood pressure by stimulating α2 receptors in the brain, which decreases peripheral vascular resistance, lowering blood pressure. It has specificity towards the presynaptic α2 receptors in the vasomotor center in the brainstem. This binding decreases presynaptic calcium levels, thus inhibiting the release of norepinephrine (NE). It has also been proposed that the antihypertensive effect of clonidine is due to agonism on the I1 receptor (imidazoline receptor), which mediates the sympatho-inhibitory actions of imidazolines to lower blood pressure. Clonidines mechanism of action in the treatment of ADHD is to increase noradrenergic tone in the prefrontal cortex (PFC) directly by binding to postsynaptic α2A adrenergic receptors and indirectly by increasing norepinephrine input from the locus coeruleus. Clonidine indicated in the treatment of hypertension. Clonidine hydrochloride tablets may be employed alone or concomitantly with other antihypertensive agents. The US Food and Drug Administration (FDA) has approved clonidine for the treatment of attention deficit hyperactivity disorder (ADHD), under the trade name of Kapvay alone or with stimulants in 2010, for pediatric patients aged 6–17 years.
Status:
First approved in 1952
Source:
Regitine HCl by Ciba
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)



Phentolamine (trade name Regitine) is a reversible nonselective α-adrenergic antagonist used for the control of hypertensive emergencies, most notably due to pheochromocytoma. Phentolamine produces its therapeutic actions by competitively blocking alpha-adrenergic receptors (primarily excitatory responses of smooth muscle and exocrine glands), leading to a muscle relaxation and a widening of the blood vessels. This widening of the blood vessels results in a lowering of blood pressure. The action of phentolamine on the alpha-adrenergic receptors is relatively transient and the blocking effect is incomplete. The drug is more effective in antagonizing responses to circulating epinephrine and/or norepinephrine than in antagonizing responses to mediator released at the adrenergic nerve ending. Phentolamine also stimulates β-adrenergic receptors and produces a positive inotropic and chronotropic effect on the heart and increases cardiac output. Phentolamine is indicated for the prevention or control of hypertensive episodes that may occur in a patient with pheochromocytoma as a result of stress or manipulation during preoperative preparation and surgical excision. Phentolamine is indicated for the prevention or treatment of dermal necrosis and sloughing following intravenous administration or extravasation of norepinephrine. Phentolamine is also indicated for the diagnosis of pheochromocytoma by the Phentolamine blocking test. Acute and prolonged hypotensive episodes, tachycardia, and cardiac arrhythmias have been reported. In addition, weakness, dizziness, flushing, orthostatic hypotension, nasal stuffiness, nausea, vomiting, and diarrhea may occur.
Status:
US Approved OTC
Source:
21 CFR 341.20(b)(7) cough/cold:nasal decongestant oxymetazoline hydrochloride
Source URL:
First approved in 1964
Source:
Afrin by Schering
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)



Oxymetazoline is an adrenergic alpha-agonist, direct acting sympathomimetic, used as a vasoconstrictor to relieve nasal congestion The sympathomimetic action of oxymetazoline constricts the smaller arterioles of the nasal passages, producing a prolonged (up to 12 hours), gentle and decongesting effect. Oxymetazoline elicits relief of conjunctival hyperemia by causing vasoconstriction of superficial conjunctival blood vessels. The drug's action has been demonstrated in acute allergic conjunctivitis and in chemical (chloride) conjunctivitis. Oxymetazoline is self-medication for temporary relief of nasal congestion associated with the common cold, hay fever, or other upper respiratory allergies. Oxymetazoline is available over-the-counter as a topical decongestant in the form of oxymetazoline hydrochloride in nasal sprays such as Afrin, Operil, Dristan, Dimetapp, oxyspray, Facimin, Nasivin, Nostrilla, Sudafed OM, Vicks Sinex, Zicam, SinuFrin, and Mucinex Full Force. Due to its vasoconstricting properties, oxymetazoline is also used to treat nose bleeds and eye redness.
Status:
US Approved OTC
Source:
21 CFR 341.20(b)(10) cough/cold:nasal decongestant xylometazoline hydrochloride
Source URL:
First approved in 1959
Source:
Otrivin by Ciba Geigy
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)



Xylometazoline, also spelled xylomethazoline, is a medication which is used to improve symptoms of nasal congestion, allergic rhinitis, and sinusitis. Xylometazoline was patented in 1956 and came into medical use in 1959. It is on the World Health Organization's List of Essential Medicines, the most effective and safe medicines needed in a health system. The drug works by stimulating adrenergic receptors on the lamina propria of blood vessels in the nose. The decongestant effect is due to constriction of large veins in the nose which swell up during the inflammation of any infection or allergy of the nose. The smaller arteries are also constricted and this causes the colour of the nasal epithelium to be visibly paler after dosage. The standard adult solution strength is 0.1% w/v xylometazoline (or 1 mg per 1 mL solution), and the dose for children under 12 is usually 0.05% (0.5 mg/mL).
Status:
US Approved OTC
Source:
21 CFR 349.18(d) ophthalmic:vasoconstrictor tetrahydrozoline hydrochloride
Source URL:
First approved in 1954
Source:
Tyzine by Pfizer
Source URL:

Class (Stereo):
CHEMICAL (RACEMIC)



Tetrahydrozoline is an alpha adrenergic receptor agonist, which is used in form of nasal solution or spray (Tyzin) for decongestion of nasal and nasopharyngeal mucosa.
Status:
US Approved OTC
Source:
21 CFR 349.18(b) ophthalmic:vasoconstrictor naphazoline hydrochloride
Source URL:
First approved in 1942
Source:
Privine HCl by Ciba
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)


Conditions:

Naphazoline is a direct acting sympathomimetic adrenergic alpha-agonist used to induce systemic vasoconstriction, thereby decreasing nasal congestion and inducing constriction around the conjunctiva. The sympathomimetic action of Naphazoline constricts the smaller arterioles of the nasal passages, producing a decongesting effect. Naphazoline ophthalmic causes constriction of blood vessels in the eyes. It also decreases itching and irritation of the eyes. aphazoline constricts the vascular system of the conjunctiva. It is presumed that this effect is due to direct stimulation action of the drug upon the alpha adrenergic receptors in the arterioles of the conjunctiva resulting in decreased conjunctival congestion. Naphazoline belongs to the imidazoline class of sympathomimetics. Naphazoline is a direct acting sympathomimetic drug, which acts on alpha-adrenergic receptors in the arterioles of the nasal mucosa. This activates the adrenal system to yield systemic vasoconstrction. In producing vasoconstriction, the result is a decrease in blood flow in the nasal passages and consequently decreased nasal congestion. The vasoconstriction means that there is less pressure in the capillaries and less water can filter out, thus less discharge is made. Naphazoline is primarily indicated in conditions like Corneal vascularity, Hyperaemia, Itching, Nasal congestion, and can also be given in adjunctive therapy as an alternative drug of choice in Sinusitis.
Status:
Investigational
Source:
INN:tiamenidine
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)

Tiamenidine (also known as HOE 440) is a diazacycloalkene derivative patented by Farbwerke Hoechst A.-G. as 2 alpha-sympathomimetic antihypertensive agents. In preclinical models, tiamenidine induces hypotension and bradycardia in renal hypertensive cats and rats and in normal rats and dogs. Furthermore, Tiamenidine inhibits the liberation of norepinephrine from nerves leading to the heart and suppress sympathetic circulatory reflexes in dogs. In clinical trials, Tiamenidine exerts favor influences on systolic and diastolic blood pressure, and reduces plasma noradrenaline and adrenaline levels and suppresses plasma renin activity. Unfortunately, during the withdrawal of Tiamenidine, there is a rebound of blood pressure and plasma noradrenaline and adrenaline, overshooting baseline levels.
Status:
Investigational
Source:
INN:dexefaroxan
Source URL:

Class (Stereo):
CHEMICAL (RACEMIC)


Efaroxan (RX 821037) is a potent and selective alpha(2)-adrenoceptor antagonist. Additionally, Efaroxan is a selective antagonist at the imidazoline I1 receptor. Efaroxan promotes insulin secretion, in the absence of exogenous agonists, by a mechanism that involves inhibition of ATP-regulated K+ channels. Efaroxan was in clinical trials for the treatment of diabetes mellitus however its development has been discontinued.

Showing 11 - 20 of 123 results