{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Search results for hydrocortisone root_names_stdName in Standardized Name (approximate match)
Status:
US Previously Marketed
Source:
KAFOCIN by LILLY
(1970)
Source URL:
First approved in 1970
Source:
KAFOCIN by LILLY
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Cephaloglycin, first oral cephalosporin, was introduced in 1965, but is no longer in common use. It is an orally absorbed derivative of cephalosporin C. Cephaloglycin binds to and inactivates penicillin-binding proteins (PBPs) located on the inner membrane of the bacterial cell wall. PBPs are enzymes involved in the terminal stages of assembling the bacterial cell wall and in reshaping the cell wall during growth and division. Inactivation of PBPs interferes with the cross-linkage of peptidoglycan chains necessary for bacterial cell wall strength and rigidity. This results in the weakening of the bacterial cell wall and causes cell lysis.
Status:
US Previously Marketed
Source:
HALDRONE by LILLY
(1961)
Source URL:
First approved in 1961
Source:
HALDRONE by LILLY
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Paramethasone acetate (a derivative of paramethasone) is a glucocorticoid with the general properties of corticosteroids. It has been used by mouth in the treatment of all conditions in which corticosteroid therapy is indicated except adrenal-deficiency states for which its lack of sodium-retaining properties makes it less suitable than hydrocortisone with supplementary fludrocortisone.
Status:
First approved in 1960
Class (Stereo):
CHEMICAL (ABSOLUTE)
Status:
US Previously Marketed
First approved in 1958
Class (Stereo):
CHEMICAL (MIXED)
Targets:
Cyclandelate is a vasodilator developed for the treatment of cardiovascular diseases. The drug was used in many countries for such diseases as intermittent claudication, arteriosclerosis obliterans, thrombophlebitis, nocturnal leg cramps, local frostbite, Raynaud's phenomenon. In the USA it was also approved for intermittent claudication and cognitive dysfunction in Alzheimer's disease under the name Cyclospasmol. Cyclandelate exerts its effect by blocking calcium channels and inhibiting smooth muscles contration. Cyclandelate was withdrawn from the market in the USA for lack of effectiveness.
Status:
US Previously Marketed
Source:
DARTAL 100MG by SEARLE
(1961)
Source URL:
First approved in 1957
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
THIOPROPAZATE, a phenothiazine derivative, is a typical antipsychotic. It is a prodrug to perphenazine.
Status:
US Previously Marketed
Source:
PACATAL 25MG by WC
(1961)
Source URL:
First approved in 1957
Class (Stereo):
CHEMICAL (RACEMIC)
PECAZINE is a phenothiazine derivative that was used as an antipsychotic. It is also an allosteric inhibitor of MALT1 paracaspase activity.
Status:
US Previously Marketed
First approved in 1955
Class (Stereo):
CHEMICAL (ABSOLUTE)
Status:
First approved in 1950
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Ethyl biscoumacetate is a courmarin that is used as an anticoagulant. It has actions similar to those of Warfarin. It has been used in the management of thromboembolic disorders.
Status:
US Previously Marketed
Source:
CORTISONE ACETATE by WATSON LABS
(1978)
Source URL:
First approved in 1950
Source:
CORTONE by MERCK
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Cortisone is a hormone that is FDA approved for the treatment of primary and secondary adrenocortical deficiency, rheumatic disorders, psoriasis, exfoliative dermatitis, bronchial asthma, allergic conjunctivitis, hemolytic anemia, enteritis, tuberculosis, trichnosis. Cortisone acetate binds to the cytosolic glucocorticoid receptor. After binding the receptor, the newly formed receptor-ligand complex translocates itself into the cell nucleus, where it binds to many glucocorticoid response elements (GRE) in the promoter region of the target genes. The DNA bound receptor then interacts with basic transcription factors, causing the increase in expression of specific target genes. Common adverse reactions include convulsions, increased intracranial pressure with papilledema, vertigo, headache, psychic disturbances, hirsuitism, glaucoma, exophthalmos. Aminoglutethimide may lead to a loss of corticosteroid-induced adrenal suppression. Co-administration of corticosteroids and warfarin usually results in inhibition of response to warfarin, although there have been some conflicting reports. Cortisone is a natural steroid hormone. Its sulfate analog has been detected in in umbilical vein blood fetus plasma between 19 and 32 weeks of gestation with a significant increase at 29-30 weeks and in amniotic fluid. Base on the experiments with rats it was suggested that cortisone sulfate in mammals could be hydrolyzed enzymatically liberating sulfate ions from cortisone. Cortisone sulfate has been proposed for use as one of the glycosaminoglycan compound materials in a cartilage prosthesis and biological nasal bridge implant manufacture as well as auxiliary agent in powder aerosol composition for use in baby powder, dry shampoo, water-eczema remedy and antiperspirant.
Status:
US Previously Marketed
Source:
CHLOROMYCETIN HYDROCORTISONE by PARKEDALE
(1953)
Source URL:
First approved in 1950
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Chloramphenicol is a broad-spectrum antibiotic that was first isolated from
Streptomyces venezuelae in 1947. The drug was subsequently chemically synthesized. It has both a bacteriostatic and bactericidal effect; in the usual therapeutic concentrations it is bacteriostatic. Chloramphenicol is used for the treatment of serious gram-negative, gram-positive, and anaerobic infections. It is especially useful in the treatment of meningitis, typhoid fever, and cystic fibrosis. It should be reserved for infections for which other drugs are ineffective or contraindicated. Chloramphenicol, a small inhibitor of bacterial protein synthesis, is active against a variety of bacteria and readily enters the CSF. It has been used extensively in the last decades for the treatment of bacterial meningitis. In industrialized countries, chloramphenicol is restricted mostly to topical uses because of the risk of induction of aplastic anemia. However, it remains a valuable reserve antibiotic for patients with allergy to β-lactam antibiotics or with CNS infections caused by multiresistant pathogens.