U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 161 - 170 of 554 results

Status:
First approved in 1974

Class (Stereo):
CHEMICAL (RACEMIC)



Ibuprofen is a nonsteroidal anti-inflammatory agent (NSAIA) or nonsteroidal anti-inflammatory drug (NSAID), with analgesic and antipyretic properties. Ibuprofen has pharmacologic actions similar to those of other prototypical NSAIAs, which are thought to act through inhibition of prostaglandin synthesis. It’s used temporarily relieves minor aches and pains due to: headache; the common cold; muscular aches; backache; toothache; minor pain of arthritis; menstrual cramps and temporarily reduces fever. The exact mechanism of action of ibuprofen is unknown. Ibuprofen is a non-selective inhibitor of cyclooxygenase, an enzyme invovled in prostaglandin synthesis via the arachidonic acid pathway. Its pharmacological effects are believed to be due to inhibition cylooxygenase-2 (COX-2) which decreases the synthesis of prostaglandins involved in mediating inflammation, pain, fever and swelling. Antipyretic effects may be due to action on the hypothalamus, resulting in an increased peripheral blood flow, vasodilation, and subsequent heat dissipation. Inhibition of COX-1 is thought to cause some of the side effects of ibuprofen including GI ulceration. Ibuprofen is administered as a racemic mixture. The R-enantiomer undergoes extensive interconversion to the S-enantiomer in vivo. The S-enantiomer is believed to be the more pharmacologically active enantiomer.
Naloxone, sold under the brand name Narcan among others, is a medication used to block the effects of opioids, especially in overdose. Naloxone has an extremely high affinity for μ-opioid receptors in the central nervous system (CNS). Naloxone is a μ-opioid receptor (MOR) inverse agonist, and its rapid blockade of those receptors often produces rapid onset of withdrawal symptoms. Naloxone also has an antagonist action, though with a lower affinity, at κ- (KOR) and δ-opioid receptors (DOR). If administered in the absence of concomitant opioid use, no functional pharmacological activity occurs (except the inability for the body to combat pain naturally). In contrast to direct opiate agonists, which elicit opiate withdrawal symptoms when discontinued in opiate-tolerant people, no evidence indicates the development of tolerance or dependence on naloxone. The mechanism of action is not completely understood, but studies suggest it functions to produce withdrawal symptoms by competing for opiate receptor sites within the CNS (a competitive antagonist, not a direct agonist), thereby preventing the action of both endogenous and xenobiotic opiates on these receptors without directly producing any effects itself. When administered parenterally (e.g. intravenously or by injection), as is most common, naloxone has a rapid distribution throughout the body. The mean serum half-life has been shown to range from 30 to 81 minutes, shorter than the average half-life of some opiates, necessitating repeat dosing if opioid receptors must be stopped from triggering for an extended period. Naloxone is primarily metabolized by the liver. Its major metabolite is naloxone-3-glucuronide, which is excreted in the urine. Naloxone is useful both in acute opioid overdose and in reducing respiratory or mental depression due to opioids. Whether it is useful in those in cardiac arrest due to an opioid overdose is unclear. Naloxone is poorly absorbed when taken by mouth, so it is commonly combined with a number of oral opioid preparations, including buprenorphine and pentazocine, so that when taken orally, just the opioid has an effect, but if misused by injecting, the naloxone blocks the effect of the opioid. In a meta-analysis of people with shock, including septic, cardiogenic, hemorrhagic, or spinal shock, those who received naloxone had improved blood flow. Naloxone is also experimentally used in the treatment for congenital insensitivity to pain with anhidrosis, an extremely rare disorder (one in 125 million) that renders one unable to feel pain or differentiate temperatures. Naloxone can also be used as an antidote in overdose of clonidine, a medication that lowers blood pressure.
Status:

Class (Stereo):
CHEMICAL (ABSOLUTE)



Levodopa (L-DOPA) was first isolated from seedlings of Vicia faba by Marcus Guggenheim in 1913. Levodopa, a dopamine precursor, is an effective and well-tolerated dopamine replacement agent used to treat Parkinson's disease. Oral levodopa has been widely used for over 40 years, often in combination with a dopa-decarboxylase inhibitor carbidopa, which reduces many treatment complications, extending its half-life and increasing levodopa availability to the brain. Entacapone, a catechol-O-methyltransferase inhibitor, can also be used to improve the bioavailability of levodopa, especially when used in conjunction with a carbidopa.
Status:
First approved in 1969
Source:
Cytostar by Upjohn
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)



Cytarabine is a pyrimidine nucleoside analog. Cytarabine or cytosine arabinoside (Cytosar-U or Depocyt) is a chemotherapy agent used mainly in the treatment of cancers of white blood cells such as acute myeloid leukemia (AML) and non-Hodgkin lymphoma. It also has antiviral and immunosuppressant properties. Cytarabine is an antimetabolite antineoplastic agent that inhibits the synthesis of DNA. It is a cell cycle phase-specific, affecting cells only during the S phase of cell division. Intracellularly, cytarabine is converted into cytarabine-5-triphosphate (ara-CTP), which is the active metabolite. The mechanism of action is not completely understood, but it appears that ara-CTP acts primarily through inhibition of DNA polymerase. Incorporation into DNA and RNA may also contribute to cytarabine cytotoxicity. Cytarabine is cytotoxic to a wide variety of proliferating mammalian cells in culture.The drug has a short plasma half-life, low stability and limited bioavailability. Overdosing of patients with continuous infusions may lead to side effects. Thus, various prodrug strategies and delivery systems have been explored extensively to enhance the half-life, stability and delivery of cytarabine. Alternative, delivery systems of cytarabine have emerged for the treatment of different cancers. The liposomal-cytarabine formulation has been approved for the treatment of lymphomatous meningitis.

Class (Stereo):
CHEMICAL (ACHIRAL)


Conditions:

Fentanyl is a potent agonist of mu opioid receptor. It is used to relieve severe pain, such as after surgery or during cancer treatment, and breakthrough pain (flare-ups of intense pain despite round-the-clock narcotic treatment). Fentanyl is an extremely powerful analgesic, 50–100-times more potent than morphine. Fentanyl harbors massive risk for addiction and abuse regardless of its prescription form. Fentanyl abuse is especially dangerous to those without a tolerance to opioids. The substance’s already elevated risk of overdose is multiplied when someone without a tolerance abuses it.

Class (Stereo):
CHEMICAL (ACHIRAL)



Hydroxyurea is an oral antimetabolite; inhibits ribonucleotide reductase and DNA synthesis. It is used for resistant chronic myeloid leukemia, locally advanced squamous cell carcinomas of the head and neck (excluding lip) in combination with concurrent chemoradiation, and to reduce the frequency of painful crises and the need for blood transfusions in patients with sickle cell anemia with recurrent moderate to severe painful crises. Hydroxyurea, a myelosuppressive agent, is the only effective drug proven to reduce the frequency of painful episodes. It raises the level of HbF and the haemoglobin level. It usually decreases the rate of painful episodes by 50%. It was first tested in sickle cell disease in 1984. It also decreases the rate of ACS episodes and blood transfusions by ~50 % in adults. It was developed as an anticancer drug and has been used to treat myeloproliferative syndromes-leukemia, melanoma, and ovarian cancer. It was approved for use by FDA in adults. Side effects includes neutropenia, bone marrow suppression, elevation of hepatic enzymes, anorexia, nausea, vomiting and infertility.
Status:
First approved in 1965

Class (Stereo):
CHEMICAL (RACEMIC)


Conditions:

Prilocaine is a local anesthetic that is similar pharmacologically to lidocaine. Prilocaine binds to the intracellular surface of sodium channels which blocks the subsequent influx of sodium into the cell. Action potential propagation and never function is, therefore, prevented. This block is reversible and when the drug diffuses away from the cell, sodium channel function is restored and nerve propagation returns. Prilocaine acts on sodium channels on the neuronal cell membrane, limiting the spread of seizure activity and reducing seizure propagation. The antiarrhythmic actions are mediated through effects on sodium channels in Purkinje fibers. Currently, Prilocaine is used most often for infiltration anesthesia in dentistry.
Phentermine is an amphetamine that stimulates neurons to release or maintain high levels of a particular group of neurotransmitters known as catecholamines; these include dopamine and norepinephrine. High levels of these catecholamines tend to suppress hunger signals and appetite. The drug seems to inhibit reuptake of noradrenaline, dopamine, and seratonin through inhibition or reversal of the reuptake transporters. It may also inhibit MAO enzymes leaving more neurotransmitter available at the synapse. Phentermine (through catecholamine elevation) may also indirectly affect leptin levels in the brain. It is theorized that phentermine can raise levels of leptin which signal satiety. It is also theorized that increased levels of the catecholamines are partially responsible for halting another chemical messenger known as neuropeptide Y. This peptide initiates eating, decreases energy expenditure, and increases fat storage. Phentermine is indicated in the management of exogenous obesity as a short term (a few weeks) adjunct in a regimen of weight reduction based on caloric restriction. Phentermine hydrochloride is a sympathomimetic amine with pharmacologic activity similar to the prototype drugs of this class used in obesity, the amphetamines. Actions include central nervous system stimulation and elevation of blood pressure. Tachyphylaxis and tolerance have been demonstrated with all drugs of this class in which these phenomena have been looked for.
N,N’N’-triethylenethiophosphoramide (ThioTEPA) is a cancer chemotherapeutic member of the alkylating agent group, now in use for over 50 years. It is a stable derivative of N,N’,N’’- triethylenephosphoramide (TEPA). The radiomimetic action of thiotepa is believed to occur through the release of ethylenimine radicals which, like irradiation, disrupt the bonds of DNA. One of the principal bond disruptions is initiated by alkylation of guanine at the N-7 position, which severs the linkage between the purine base and the sugar and liberates alkylated guanines. Thiotepa has been used in the palliation of a wide variety of neoplastic diseases. The more consistent results have been seen in: adenocarcinoma of the breast, adenocarcinoma of the ovary, superficial papillary carcinoma of the urinary bladder and for controlling intracavitary effusions secondary to diffuse or localized neoplastic diseases of various serosal cavities.

Showing 161 - 170 of 554 results