{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Search results for "Pharmacologic Substance[C1909]|Enzyme Inhibitor[C471]|Protein Kinase Inhibitor[C1404]" in comments (approximate match)
Status:
Investigational
Source:
NCT00908752: Phase 3 Interventional Completed Hepatocellular Carcinoma
(2009)
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Brivanib is a pyrrolotriazine-based compound and an inhibitor of vascular endothelial growth factor receptor-2 (VEGFR-2) with potential antineoplastic activity. It specifically targets and strongly binds to human VEGFR-2, a tyrosine kinase receptor and pro-angiogenic growth factor expressed almost exclusively on vascular endothelial cells. Blockade of VEGFR-2 by this agent may lead to an inhibition of VEGF-stimulated endothelial cell migration and proliferation, thereby inhibiting tumor angiogenesis. Brivanib has a moderate potency compared to VEGFR-2 against VEGFR-1 and FGFR-1 as well. Brivanib is suggested to be efficient in treatment of hepatocellular carcinoma (HCC). As first-line and as second-line therapy brivanib demonstrated promising antitumor activity and a manageable safety profile in patients with advanced, unresectable HCC in phase II clinical trials. On 3 march 2011, orphan designation was granted by the European Commission to Bristol-Myers Squibb for brivanib alaninate for the treatment of hepatocellular carcinoma.[
Status:
Investigational
Source:
NCT03784378: Phase 1 Interventional Completed Non Small Cell Lung Cancer
(2018)
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
CEP-32496 (RXDX 105) is an orally administered, small molecule, VEGFRsparing, RET, BRAF, EGFR tyrosine kinase inhibitor, for the treatment of solid tumours, including malignant melanoma and colorectal cancer. CEP-32496 was originally discovered by Ambit Biosciences (now Daiichi Sankyo) and Cephalon (now owned by Teva) as part of a research programme to develop orally administered kinase inhibitors. The worldwide rights to the compound were licensed to Teva by Ambit, following the acquisition of Cephalon by Teva. Teva, in March 2015, entered into an asset purchase agreement with Ignyta, pursuant to which, Ignyta has acquired worldwide rights and assets of four oncology development programmes, including CEP-32496. Following the acquisition of the compound by Ignyta, CEP 32496 has been renamed to RXDX 105. Phase I/Ib development of RXDX 105 for the treatment of advanced solid tumours is underway in the US.
Status:
Investigational
Source:
NCT00056459: Phase 3 Interventional Completed Colorectal Neoplasms
(2003)
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Vatalanib a potent oral tyrosine kinase inhibitor with a selective range of molecular targets, has been extensively investigated and has shown promising results in patients with solid tumors in early trials. Vatalanib selectively inhibits the tyrosine kinase domains of vascular endothelial growth factor (VEGF) receptor tyrosine kinases (important enzymes in the formation of new blood vessels that contribute to tumor growth and metastasis), platelet-derived growth factor (PDGF) receptor, and c-KIT. The adverse effects of vatalanib appear similar to those of other VEGF inhibitors. In the CONFIRM trials, the most common side effects were high blood pressure, gastrointestinal upset (diarrhea, nausea, and vomiting), fatigue, and dizziness.
Status:
Investigational
Source:
NCT01097018: Phase 3 Interventional Completed Colorectal Cancer
(2010)
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Perifosine is an orally active alkyl-phosphocholine compound with potential antineoplastic activity. Perifosine is an Akt inhibitor, which targets the pleckstrin homology domain of Akt, thereby preventing its translocation to the plasma membrane. Perifosine exerts Akt-dependent and Akt-independent effects, and although many preclinical studies have documented Akt inhibition by perifosine, clinical validation of these findings is lacking. Perifosine is in phase II and III clinical trials for the treatment of neuroblastoma, glioblastoma multiforme and other solid tumors.
Status:
Investigational
Source:
NCT00667394: Phase 2 Interventional Completed Glioblastoma
(2008)
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Millennium Pharmaceuticals Inc's tandutinib (MLN-518), a piperazinyl derivative of quinazoline, is an orally active inhibitor of FLT3 kinase and family members PDGFR beta and c-Kit. Tandutinib inhibited FLT3 phosphorylation, downstream signaling and malignant growth in vitro and in animal models. The drug exhibited limited activity as a single agent in phase I and II clinical trials in patients with AML and myelodysplastic syndrome, but displayed promising antileukemic activity (90% complete remissions) in a phase I/II trial in patients with newly diagnosed AML when administered in combination with cytarabine and daunorubicin. Phase II clinical trials for tandutinib in patients with Glioblastoma have being discontinued. The use of tandutinib to treat AML has been granted fast-track status by the U.S. Food and Drug Administration. Phase II trials were underway., but later withwrawn.
Status:
Investigational
Source:
NCT01357395: Phase 2 Interventional Completed Small Cell Lung Carcinoma
(2011)
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Amuvatinib (formerly known as MP470) is an oral multi-targeted tyrosine kinase inhibitor, which play critical roles in transducing growth signals to cancer cells. It suppresses c-MET, c-RET and the mutant forms of cKIT, PDGFR and FLT3. It also disrupts DNA repair likely through suppression of homologous recombination protein Rad51, an important survival pathway in many human cancers. In vitro and in vivo data have demonstrated amuvatinib synergy with DNA damaging agents including etoposide and doxorubicin. Overall, in the amuvatinib clinical development program, over 200 subjects were exposed to at least one dose of amuvatinib. In the Phase 1b clinical study in combination with carboplatin and etoposide, responses in small cell lung cancer (SCLC), neuroendocrine as well as other tumor types were observed. Human pharmacokinetic data suggest that co-administration of amuvatinib did not alter exposures of standard of care agents including carboplatin, etoposide, doxorubicin, paclitaxel, topotecan or erlotinib as measured by overall exposure. In the first-in-human study, durable clinical benefit was observed in the gastrointestinal stromal tumors (GIST) with modulation of Rad51 observed in skin punch biopsies. In clinical trials, amuvatinib has demonstrated a wide therapeutic window and shows minimal toxicity in the expected therapeutic dose range, despite suppressing several signaling pathways within cells. However, in spite of this, this drug was discontinued, because it was not pre-specified primary endpoints in the clinical proof of concept (cPOC) stage. But the combination of MP470 and Erlotinib, which target the HER family/PI3K/Akt pathway may represent a novel therapeutic strategy for prostate cancer.
Status:
Investigational
Source:
NCT02452008: Phase 2 Interventional Active, not recruiting Prostate Cancer
(2016)
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Galunisertib is a potent inhibitor of TGF beta type 1 receptor. The drug is under clinical development for the treatment of different cancers: pancreatic, hepatocellular, breast, rectal, prostate etc. and reached phase 2/3 in patients with myelodysplastic syndromes.
Status:
Investigational
Source:
NCT00084812: Phase 1 Interventional Completed Unspecified Adult Solid Tumor, Protocol Specific
(2004)
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Safingol, the synthetic L-threo-stereoisomer of endogenous (D-erythro-) sphinganine, is an inhibitor of protein kinase C and sphingosine kinase in vitro, and in some cell types has been implicated in ceramide generation and induction of apoptosis. Safingol inhibits enzymatic activity and 3H-phorbol dibutyrate binding of purified rat brain PKC (IC50 = 37.5 uM and 31uM, respectively). Inhibits human PKCα, the major overexpressed isoenzyme in MCF-7 DOXR cells (IC50 = 40 uM). Safingol enhances the cytotoxic effect of the chemotherapeutic agent Mitomycin C (MMC) in gastric cancer cells by promoting drug-induced apoptosis. Safingol is an inhibitor of SphK (Sphingosine kinase). Safingol has been shown to act synergistically with other chemotherapeutic agents and may potentiate chemotherapy drug-induced apoptosis in vitro and in vivo.
Status:
Investigational
Source:
NCT01692197: Phase 2 Interventional Completed Leukemia
(2013)
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Indisulam (also known as E7070) is a sulfonamide derivative patented by Japanese pharmaceutical company Eisai Co. as antitumor agent. Indisulam inhibits cyclin-dependent kinases (CDK), which regulate cell cycle progression and are usually over-expressed in cancerous cells. Inhibition of CDK results in G1/S phase arrest of the cell cycle, and may lead to induction of apoptosis and inhibition of tumor cell proliferation. Preclinical and clinical studies have established the synergy of indisulam with nucleoside analogs as well as topoisomerase inhibitors. These combinations were tolerated with acceptable toxicities, including diarrhea, vomiting, and myelosuppression. In Phase II clinical trials Combination of indisulam with DNA‐damaging agent (idarubicin) and nucleoside analog (cytarabine) in patients with relapsed and refractory AML is effective and largely well tolerated.
Status:
Investigational
Source:
NCT00988858: Phase 2 Interventional Completed Non Small Cell Lung Cancer
(2009)
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Rabusertib is a Chk1 kinase inhibitor which was developed by ICOS for the treatment of cancer. The drug was tested in phase II of clinical trials for pancreatic cancer and non small cell lung carcinoma, but its development was discontinued. Now the drug is undergoing phase I trial in Japanese patients with solid tumors.