{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Search results for "Pharmacologic Substance[C1909]|Enzyme Inhibitor[C471]|Protein Kinase Inhibitor[C1404]" in comments (approximate match)
Status:
Investigational
Source:
NCT00050830: Phase 2 Interventional Completed Lung Neoplasms
(2003)
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Canertinib or CI-1033 (N-[4-[N-(3-Chloro-4-fluorophenyl)amino]-7-[3-(4-morpholinyl)propoxy]quinazolin-6-yl]acrylamide) is a pan-erbB tyrosine kinase inhibitor. It selectively inhibits erbB1 (epidermal growth factor receptor), erbB2, erbB3, and erbB4 without inhibiting tyrosine kinase activity of receptors such as platelet-derived growth factor receptor, fibroblast growth factor receptor, and insulin receptor, even at high concentrations. Canertinib was under development by Pfizer Inc as a potential treatment for cancer.
Status:
Investigational
Source:
NCT00056459: Phase 3 Interventional Completed Colorectal Neoplasms
(2003)
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Vatalanib a potent oral tyrosine kinase inhibitor with a selective range of molecular targets, has been extensively investigated and has shown promising results in patients with solid tumors in early trials. Vatalanib selectively inhibits the tyrosine kinase domains of vascular endothelial growth factor (VEGF) receptor tyrosine kinases (important enzymes in the formation of new blood vessels that contribute to tumor growth and metastasis), platelet-derived growth factor (PDGF) receptor, and c-KIT. The adverse effects of vatalanib appear similar to those of other VEGF inhibitors. In the CONFIRM trials, the most common side effects were high blood pressure, gastrointestinal upset (diarrhea, nausea, and vomiting), fatigue, and dizziness.
Status:
Investigational
Source:
NCT01357395: Phase 2 Interventional Completed Small Cell Lung Carcinoma
(2011)
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Amuvatinib (formerly known as MP470) is an oral multi-targeted tyrosine kinase inhibitor, which play critical roles in transducing growth signals to cancer cells. It suppresses c-MET, c-RET and the mutant forms of cKIT, PDGFR and FLT3. It also disrupts DNA repair likely through suppression of homologous recombination protein Rad51, an important survival pathway in many human cancers. In vitro and in vivo data have demonstrated amuvatinib synergy with DNA damaging agents including etoposide and doxorubicin. Overall, in the amuvatinib clinical development program, over 200 subjects were exposed to at least one dose of amuvatinib. In the Phase 1b clinical study in combination with carboplatin and etoposide, responses in small cell lung cancer (SCLC), neuroendocrine as well as other tumor types were observed. Human pharmacokinetic data suggest that co-administration of amuvatinib did not alter exposures of standard of care agents including carboplatin, etoposide, doxorubicin, paclitaxel, topotecan or erlotinib as measured by overall exposure. In the first-in-human study, durable clinical benefit was observed in the gastrointestinal stromal tumors (GIST) with modulation of Rad51 observed in skin punch biopsies. In clinical trials, amuvatinib has demonstrated a wide therapeutic window and shows minimal toxicity in the expected therapeutic dose range, despite suppressing several signaling pathways within cells. However, in spite of this, this drug was discontinued, because it was not pre-specified primary endpoints in the clinical proof of concept (cPOC) stage. But the combination of MP470 and Erlotinib, which target the HER family/PI3K/Akt pathway may represent a novel therapeutic strategy for prostate cancer.
Status:
Investigational
Source:
NCT00957905: Phase 2 Interventional Completed Recurrent Extragonadal Seminoma
(2009)
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Alvocidib (also known as Flavopiridol or HMR-1275) is a flavonoid alkaloid CDK9 kinase inhibitor under clinical development for the treatment of acute myeloid leukemia, by Tolero Pharmaceuticals, Inc. As a broad spectrum CDK inhibitor, Alvocidib can inhibit cell cycle progression in either G1 or G2 and induces G1 arrest in either MCF-7 or MDA-MB-468 cells by inhibition of the CDK4 or CDK2 kinase activity. Alvocidib exhibits potent cytotoxicity against a wide variety of tumor cell lines (LNCAP, HCT116, A2780, K562, PC3, and Mia PaCa-2) with IC50 values ranging from 16 nM for LNCAP to 130 nM for K562. Administration of Alvocidib at 7.5 mg/kg for 7 days displays slight antitumor activity against P388 murine leukemia, and active against the human A2780 ovarian carcinoma implanted sc in nude mice). Alvocidib treatment at 1-2.5 mg/kg for 10 days significantly suppresses collagen-induced arthritis in mice in a dose-dependent manner, by inhibiting synovial hyperplasia and joint destruction, whereas serum concentrations of anti-collagen type II (CII) Abs and proliferative responses to CII are maintained. Tolero Pharmaceuticals Inc. announced that the FDA has granted orphan drug designation for Alvocidib, its cyclin-dependent kinase small molecule inhibitor, for the treatment of patients with acute myeloid leukemia.
Status:
Investigational
Source:
NCT04307953: Phase 2 Interventional Recruiting Fibrodysplasia Ossificans Progressiva
(2020)
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Saracatinib (AZD0530) is an oral, dual inhibitor of c-Src/Abl kinases initially developed by AstraZeneca for the treatment of cancer. The drug was tested for many neoplasms and reached phase III for ovarian cancer (in combination with paclitaxel), however without demonstrating any significant effect. Sarcatinib is also tested in patients with Alzheimer's Disease (Phase II). Its effect on Alzheimer's Disease patients is explained by inhibition of another kinase, Fyn, which is highly expressed in brain.
Status:
Investigational
Source:
NCT01928537: Phase 3 Interventional Completed Myelodysplastic Syndromes
(2013)
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Rigosertib sodium (ON 01910.Na) is a small molecule inhibitor of critical pathways important in the growth and survival of cancer cells, being developed by Onconova Therapeutics ("Onconova") for the treatment of hematologic malignancies and solid tumors. Rigosertib (ON-01910) is a non-ATP-competitive inhibitor of PLK1 with IC50 of 9 nM in a cell-free assay. It shows 30-fold greater selectivity against Plk2 and no activity to Plk3. Extensive Phase I and Phase II studies with rigosertib have been conducted at leading institutions in the U.S. and abroad in more than 450 patients with solid tumors and hematological cancers, including MDS and AML. MDS and AML are blood disorders widely recognized as difficult to manage, with limited therapeutic options available for patients, especially those with drug-resistant disease. The multi-site Phase III ONTIME trial in MDS patients is under a Special Protocol Assessment (SPA) from the U.S. FDA and is being supported by an award from the Therapeutics Acceleration Program (TAP) of the Leukemia and Lymphoma Society (LLS). FDA has granted Orphan Drug Designation for the use of rigosertib in MDS. The clinical program in solid tumors is also advancing with initiation of the Phase II/III combination ONTRAC trial (ON 01910.Na TRial in Patients with Advanced Pancreatic Cancer) and Phase II single agent trial in ovarian cancer. In Japan, SymBio is developing rigosertib for the treatment of refractory/relapsed HR-MDS (IV form) and first-line LR-MDS (oral form).
Status:
Investigational
Source:
NCT00908752: Phase 3 Interventional Completed Hepatocellular Carcinoma
(2009)
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Brivanib is a pyrrolotriazine-based compound and an inhibitor of vascular endothelial growth factor receptor-2 (VEGFR-2) with potential antineoplastic activity. It specifically targets and strongly binds to human VEGFR-2, a tyrosine kinase receptor and pro-angiogenic growth factor expressed almost exclusively on vascular endothelial cells. Blockade of VEGFR-2 by this agent may lead to an inhibition of VEGF-stimulated endothelial cell migration and proliferation, thereby inhibiting tumor angiogenesis. Brivanib has a moderate potency compared to VEGFR-2 against VEGFR-1 and FGFR-1 as well. Brivanib is suggested to be efficient in treatment of hepatocellular carcinoma (HCC). As first-line and as second-line therapy brivanib demonstrated promising antitumor activity and a manageable safety profile in patients with advanced, unresectable HCC in phase II clinical trials. On 3 march 2011, orphan designation was granted by the European Commission to Bristol-Myers Squibb for brivanib alaninate for the treatment of hepatocellular carcinoma.[
Status:
Investigational
Source:
NCT03130790: Phase 2/Phase 3 Interventional Completed Gastric Cancer
(2017)
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Varlitinib (Alternative Names: ARRY-334543; ARRY-543; ASLAN-001; Varlitinib tosylate) is a small molecule based reversible pan-HER inhibitor of EGFR, HER2 and HER4. In response to the binding of various ligands, these kinases undergo heterodimerisation and homodimerization, resulting in activation of numerous growth factor signaling pathways, by inhibiting the activation of the HER receptors via drug, effects such as shrinkage of the tumor and longer survival can be anticipated. In a large variety of cancers, the overexpression and/or constitutive activation of EGFR and HER2 are often observed and frequently correlate with poor clinical prognosis. Licensed from Array BioPharma with global rights for all indications, varlitinib is being developed as first-in-class drug for cholangiocarcinoma, gastric and colorectal cancer, and as best-in-class drug for breast cancer.
Status:
Investigational
Source:
NCT00332202: Phase 3 Interventional Completed Non Hodgkin Lymphoma
(2006)
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Enzastaurin is a serine/threonine kinase inhibitor that showed antiangiogenic, antiproliferative, and proapoptotic properties in vitro and antitumor activity in vivo in a xenograft Waldenström macroglobulinemia (WM) model. Enzastaurin (LY317615) is a potent PKCβ selective inhibitor. Enzastaurin suppresses angiogenesis and was advanced for clinical development based upon this antiangiogenic activity. Enzastaurin suppresses tumor growth through multiple mechanisms: direct suppression of tumor cell proliferation and the induction of tumor cell death coupled to the indirect effect of suppressing tumor-induced angiogenesis. Enzastaurin is an orally administered drug that was intended for the treatment of solid and haematological cancers. Enzastaurin had shown encouraging preclinical results for the prevention of angiogenesis, inhibition of proliferation and induction of apoptosis as well as showing limited cytotoxicity within phase I clinical trials. However, during its assessment in phase II and III clinical trials the efficacy of enzastaurin was poor both in combination with other drugs and as a single agent. Eli Lilly discontinued development of enzastaurin after top-line data from the double-blind, international Phase III PRELUDE trial in 758 DLBCL patients showed that enzastaurin missed the primary endpoint of improving DFS vs. placebo.
Status:
Investigational
Source:
NCT01741116: Phase 2 Interventional Completed Hormone Refractory Prostate Cancer
(2012)
Source URL:
Class (Stereo):
CHEMICAL (UNKNOWN)
Targets:
Conditions:
Dovitinib is an orally active small molecule that exhibits potent inhibitory activity against multiple receptor tyrosine kinases (RTK) involved in tumor growth and angiogenesis. Dovitinib strongly binds to fibroblast growth factor receptor 3 (FGFR3) and inhibits its phosphorylation, which may result in the inhibition of tumor cell proliferation and the induction of tumor cell death. In addition, this agent may inhibit other members of the RTK superfamily, including the vascular endothelial growth factor receptor; fibroblast growth factor receptor 1; platelet-derived growth factor receptor type 3; FMS-like tyrosine kinase 3; stem cell factor receptor (c-KIT); and colony-stimulating factor receptor 1; this may result in an additional reduction in cellular proliferation and angiogenesis, and the induction of tumor cell apoptosis. There are several ongoing Phase I/III clinical trials for dovitinib.