{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Search results for "ATC|NERVOUS SYSTEM" in comments (approximate match)
Status:
US Approved Rx
(2022)
Source:
ANDA215835
(2022)
Source URL:
First approved in 1960
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Chlordiazepoxide (trade name Librium) is a sedative and hypnotic medication of the benzodiazepine class. Chlordiazepoxide is indicated for the management of anxiety disorders or for the short-term relief of symptoms of anxiety, withdrawal symptoms of acute alcoholism, and preoperative apprehension and anxiety. Anxiety or tension associated with the stress of everyday life usually does not require treatment with an anxiolytic. The effectiveness of Librium in long-term use, that is, more than 4 months, has not been assessed by systematic clinical studies. Chlordiazepoxide acts on benzodiazepine allosteric sites that are part of the GABAA receptor/ion-channel complex and this results in an increased binding of the inhibitory neurotransmitter GABA to the GABAA receptor thereby producing inhibitory effects on the central nervous system and body similar to the effects of other benzodiazepines. Chlordiazepoxide act via micromolar benzodiazepine binding sites as Ca2+ channel blockers and significantly inhibit depolarization-sensitive Calcium uptake in animal nerve terminal preparations. The withdrawal of chlordiazepoxide during pregnancy and breastfeeding is recommended, as chlordiazepoxide rapidly crosses the placenta and also is excreted in breast milk. Chlordiazepoxide is a long-acting benzodiazepine drug. The half-life of Chlordiazepoxide is 5 – 30 hours but has an active benzodiazepine metabolite (desmethyldiazepam), which has a half-life of 36 – 200 hours. The necessity of discontinuing therapy because of undesirable effects has been rare. Drowsiness, ataxia and confusion have been reported in some patients — particularly the elderly and debilitated. While these effects can be avoided in almost all instances by proper dosage adjustment, they have occasionally been observed at the lower dosage ranges. In a few instances syncope has been reported.
Status:
US Approved Rx
(1983)
Source:
ANDA088276
(1983)
Source URL:
First approved in 1959
Source:
TOFRANIL by NOVARTIS
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Imipramine is a tricyclic antidepressant with general pharmacological properties similar to those of structurally related tricyclic antidepressant drugs such as amitriptyline and doxepin. A tertiary amine, imipramine inhibits the reuptake of serotonin more so than most secondary amine tricyclics, meaning that it blocks the reuptake of neurotransmitters serotonin and noradrenaline almost equally. With chronic use, imipramine also down-regulates cerebral cortical β-adrenergic receptors and sensitizes post-synaptic sertonergic receptors, which also contributes to increased serotonergic transmission. It takes approximately 2 - 4 weeks for antidepressants effects to occur. The onset of action may be longer, up to 8 weeks, in some individuals. It is also effective in migraine prophylaxis, but not in abortion of acute migraine attack. Imipramine works by inhibiting the neuronal reuptake of the neurotransmitters norepinephrine and serotonin. It binds the sodium-dependent serotonin transporter and sodium-dependent norepinephrine transporter preventing or reducing the reuptake of norepinephrine and serotonin by nerve cells. Depression has been linked to a lack of stimulation of the post-synaptic neuron by norepinephrine and serotonin. Slowing the reuptake of these neurotransmitters increases their concentration in the synaptic cleft, which is thought to contribute to relieving symptoms of depression. In addition to acutely inhibiting neurotransmitter re-uptake, imipramine causes down-regulation of cerebral cortical beta-adrenergic receptors and sensitization of post-synaptic serotonergic receptors with chronic use. This leads to enhanced serotonergic transmission. Used for relief of symptoms of depression and as temporary adjunctive therapy in reducing enuresis in children aged 6 years and older. May also be used to manage panic disorders, with or without agoraphobia, as a second line agent in ADHD, management of eating disorders, for short-term management of acute depressive episodes in bipolar disorder and schizophrenia, and for symptomatic treatment of postherpetic neuralgia.
Status:
US Approved Rx
(1996)
Source:
ANDA074531
(1996)
Source URL:
First approved in 1959
Source:
PERMITIL by SCHERING
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Fluphenazine is a trifluoro-methyl phenothiazine derivative intended for the management of schizophrenia and other psychotic disorders. Fluphenazine has not been shown effective in the management of behaviorial complications in patients with mental retardation. Fluphenazine blocks postsynaptic mesolimbic dopaminergic D1 and D2 receptors in the brain; depresses the release of hypothalamic and hypophyseal hormones and is believed to depress the reticular activating system thus affecting basal metabolism, body temperature, wakefulness, vasomotor tone, and emesis.
Status:
US Approved Rx
(1981)
Source:
ANDA085789
(1981)
Source URL:
First approved in 1959
Source:
STELAZINE by GLAXOSMITHKLINE
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Trifluoperazine (Eskazinyl, Eskazine, Jatroneural, Modalina, Stelazine, Terfluzine, Trifluoperaz, Triftazin) is a typical antipsychotic of the phenothiazine chemical class used for the short-term treatment of certain types of anxiety. Trifluoperazine blocks postsynaptic mesolimbic dopaminergic D1 and D2 receptors in the brain; depresses the release of hypothalamic and hypophyseal hormones and is believed to depress the reticular activating system thus affecting basal metabolism, body temperature, wakefulness, vasomotor tone, and emesis. The primary application of trifluoperazine is for schizophrenia. Other official indications may vary country by country, but generally, it is also indicated for use in agitation and patients with behavioral problems, severe nausea, and vomiting as well as severe anxiety. Trials have shown a moderate benefit of this drug in patients with borderline personality disorder. A 2004 meta-analysis of the studies on trifluoperazine found that it is more likely than placebo to cause extrapyramidal side effects such as akathisia, dystonia, and Parkinsonism. It is also more likely to cause somnolence and anticholinergic side effects such as red-eye and xerostomia (dry mouth).
Status:
US Approved Rx
(1959)
Source:
NDA011961
(1959)
Source URL:
First approved in 1959
Source:
NDA011961
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Isocarboxazid (Marplan, Marplon, Enerzer) is a non-selective, irreversible monoamine oxidase inhibitor (MAOI) of the hydrazine class used as an antidepressant. In vivo and in vitro studies demonstrated inhibition of MAO in the brain, heart, and liver. Depression is a complicated disease that is not fully understood. It is thought that depression may be linked to an imbalance of chemicals within the brain. When depression occurs, there may be a decrease in the amount of chemicals released from nerve cells in the brain. These chemicals are called monoamines. Monoamines are broken down by a chemical called monoamine oxidase. Isocarboxazid prevents monoamine oxidase from breaking down the monoamines. This results in an increased amount of active monoamines in the brain. By increasing the amount of monoamines in the brain, the imbalance of chemicals thought to be caused by depression is altered. This helps relieve the symptoms of depression. Isocarboxazid works by irreversibly blocking the action of a chemical substance known as monoamine oxidase (MAO) in the nervous system. MAO subtypes A and B are involved in the metabolism of serotonin and catecholamine neurotransmitters such as epinephrine, norepinephrine, and dopamine. Isocarboxazid, as a nonselective MAO inhibitor, binds irreversibly to monoamine oxidase–A (MAO-A) and monoamine oxidase–B (MAO-B). The reduced MAO activity results in an increased concentration of these neurotransmitters in storage sites throughout the central nervous system (CNS) and sympathetic nervous system. This increased availability of one or more monoamines is the basis for the antidepressant activity of MAO inhibitors. May be used to treat major depressive disorder.
Status:
US Approved Rx
(1988)
Source:
ANDA070338
(1988)
Source URL:
First approved in 1957
Source:
TRILAFON by SCHERING
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Perphenazine is a relatively high potency phenothiazine that blocks dopamine 2 receptors predominantly, but also may possess antagonist actions at histamine 1 and cholinergic M1 and alpha 1 adrenergic receptors in the vomiting center leading to reduced nausea and vomiting. The drug was approved by FDA for the treatment of schizophrenia and control of severe nausea and vomiting (either alone or in combination with amitriptyline hydrochloride). Perphenazine is extensively hepatic to metabolites via sulfoxidation, hydroxylation, dealkylation, and glucuronidation; primarily metabolized by CYP2D6 to N-dealkylated perphenazine, perphenazine sulfoxide, and 7-hydroxyperphenazine (active metabolite with 70% of the activity of perphenazine) and excreted in the urine and feces.
Status:
US Approved Rx
(1982)
Source:
ANDA084779
(1982)
Source URL:
First approved in 1957
Source:
DISIPAL by 3M
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
Orphenadrine is an anticholinergic drug of the ethanolamine antihistamine class used to treat muscle pain and to help with motor control in Parkinson's disease but has largely been superseded by newer drugs. Orphenadrine binds and inhibits both histamine H1 receptors and NMDA receptors. It restores the motor disturbances induced by neuroleptics, in particular, the hyperkinesia. The dopamine deficiency in the striatum increases the stimulating effects of the cholinergic system. This stimulation is counteracted by the anticholinergic effect of orphenadrine. It may have a relaxing effect on skeletal muscle spasms and it has a mood elevating effect. Orphenadrine is indicated as an adjunct to rest, physical therapy, and other measures for the relief of discomfort associated with acute painful musculoskeletal conditions. Orphenadrine is an anticholinergic with a predominantly central effect and only a weak peripheral effect. In addition, it has mild antihistaminic and local anesthetic properties. Parkinson's syndrome is the consequence of a disturbed balance between cholinergic and dopaminergic neurotransmission in the basal ganglia caused by a decrease in dopamine. Orphenadrine restores the physiological equilibrium and has a favorable effect on the rigidity and tremor of Parkinson's disease and Parkinsonian syndromes. Adverse reactions of orphenadrine citrate are mainly due to the mild anticholinergic action of orphenadrine citrate and are usually associated with higher dosage. Dryness of the mouth is usually the first adverse effect to appear. When the daily dose is increased, possible adverse effects include tachycardia, palpitation, urinary hesitancy or retention, blurred vision, dilatation of pupils, increased ocular tension, weakness, nausea, vomiting, headache, dizziness, constipation, drowsiness, hypersensitivity reactions, pruritus, hallucinations, agitation, tremor, gastric irritation and rarely urticaria and other dermatoses
Status:
US Approved Rx
(2023)
Source:
ANDA217213
(2023)
Source URL:
First approved in 1957
Source:
NDA010596
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
Conditions:
Mesuximide (or methsuximide) is an anticonvulsant medication. It is sold by Pfizer under the name Petinutin. Binds to T-type voltage sensitive calcium channels. Voltage-sensitive calcium channels (VSCC) mediate the entry of calcium ions into excitable cells and are also involved in a variety of calcium-dependent processes, including muscle contraction, hormone or neurotransmitter release, gene expression, cell motility, cell division and cell death. The isoform alpha-1G gives rise to T-type calcium currents. T-type calcium channels belong to the "low-voltage activated (LVA)" group and are strongly blocked by mibefradil. A particularity of this type of channels is an opening at quite negative potentials and a voltage-dependent inactivation. T-type channels serve pacemaking functions in both central neurons and cardiac nodal cells and support calcium signaling in secretory cells and vascular smooth muscle. They may also be involved in the modulation of firing patterns of neurons which is important for information processing as well as in cell growth processes. Mesuximide is used for the control of absence (petit mal) seizures that are refractory to other drugs.
Status:
US Approved Rx
(2019)
Source:
ANDA204860
(2019)
Source URL:
First approved in 1956
Source:
COMPAZINE by GLAXOSMITHKLINE
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Prochlorperazine is a piperazine phenothiazine antipsychotic which block postsynaptic mesolimbic dopaminergic receptors in the brain and has antiemetic effects by its antagonist actions in the D2 dopamine receptors in the chemoreceptor trigger zone. It also exhibits alpha-adrenergic blocking effect on α1 receptros and may depress the release of hypothalamic and hypophyseal hormones. Prochlorperazine is used for the control of severe nausea and vomiting, for the treatment of schizophrenia. Prochlorperazine is effective for the short-term treatment of generalized non-psychotic anxiety.
Prochlorperazine may be an effective treatment of acute headaches and refractory chronic daily headache.
Status:
US Approved Rx
(2013)
Source:
ANDA201507
(2013)
Source URL:
First approved in 1956
Source:
ATARAX by ROERIG
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
Targets:
Conditions:
Hydroxyzine, a piperazine antihistamine structurally related to buclizine, cyclizine, and meclizine, is used to treat histamine-mediated pruritus or pruritus due to allergy, nausea and vomiting, and, in combination with an opiate agonist, anxiolytic pain. Hydroxyzine is also used as a perioperative sedative and anxiolytic and to manage acute alcohol withdrawal. Hydroxyzine competes with histamine for binding at H1-receptor sites on the effector cell surface, resulting in suppression of histaminic edema, flare, and pruritus. The sedative properties of hydroxyzine occur at the subcortical level of the CNS. Secondary to its central anticholinergic actions, hydroxyzine may be effective as an antiemetic. It is used for symptomatic relief of anxiety and tension associated with psychoneurosis and as an adjunct in organic disease states in which anxiety is manifested.