{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Status:
First approved in 1982
Class (Stereo):
CHEMICAL (RACEMIC)
BENOXAPROFEN is an anti-inflammatory drug indicated for the treatment of arthritis. It was marketed under the brand name ORAFLEX® in the US and as OPREN® in Europe by Eli Lilly and Company. In 1982 Eli Lilly voluntarily withdrew BENOXAPROFEN from the market due to postmarketing reports of severe liver toxicity in patients who took it.
Status:
First approved in 1982
Class (Stereo):
CHEMICAL (RACEMIC)
BENOXAPROFEN is an anti-inflammatory drug indicated for the treatment of arthritis. It was marketed under the brand name ORAFLEX® in the US and as OPREN® in Europe by Eli Lilly and Company. In 1982 Eli Lilly voluntarily withdrew BENOXAPROFEN from the market due to postmarketing reports of severe liver toxicity in patients who took it.
Status:
First approved in 1982
Class (Stereo):
CHEMICAL (RACEMIC)
BENOXAPROFEN is an anti-inflammatory drug indicated for the treatment of arthritis. It was marketed under the brand name ORAFLEX® in the US and as OPREN® in Europe by Eli Lilly and Company. In 1982 Eli Lilly voluntarily withdrew BENOXAPROFEN from the market due to postmarketing reports of severe liver toxicity in patients who took it.
Status:
US Previously Marketed
Source:
NICLOCIDE by BAYER PHARMS
(1982)
Source URL:
First approved in 1982
Source:
NICLOCIDE by BAYER PHARMS
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Niclosamide is an antihelminth used against tapeworm infections. It may act by the uncoupling of the electron transport chain to ATP synthase. The disturbance of this crucial metabolic pathway prevents creation of adenosine tri-phosphate (ATP), an essential molecule that supplies energy for metabolism. Niclosamide works by killing tapeworms on contact. Adult worms (but not ova) are rapidly killed, presumably due to uncoupling of oxidative phosphorylation or stimulation of ATPase activity. The killed worms are then passed in the stool or sometimes destroyed in the intestine. Niclosamide may work as a molluscicide by binding to and damaging DNA. Niclosamide is used for the treatment of tapeworm and intestinal fluke infections: Taenia saginata (Beef Tapeworm), Taenia solium (Pork Tapeworm), Diphyllobothrium latum (Fish Tapeworm), Fasciolopsis buski (large intestinal fluke). Niclosamide is also used as a molluscicide in the control of schistosomiasis. Niclosamide was marketed under the trade name Niclocide, now discontinued.
Status:
US Previously Marketed
Source:
NICLOCIDE by BAYER PHARMS
(1982)
Source URL:
First approved in 1982
Source:
NICLOCIDE by BAYER PHARMS
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Niclosamide is an antihelminth used against tapeworm infections. It may act by the uncoupling of the electron transport chain to ATP synthase. The disturbance of this crucial metabolic pathway prevents creation of adenosine tri-phosphate (ATP), an essential molecule that supplies energy for metabolism. Niclosamide works by killing tapeworms on contact. Adult worms (but not ova) are rapidly killed, presumably due to uncoupling of oxidative phosphorylation or stimulation of ATPase activity. The killed worms are then passed in the stool or sometimes destroyed in the intestine. Niclosamide may work as a molluscicide by binding to and damaging DNA. Niclosamide is used for the treatment of tapeworm and intestinal fluke infections: Taenia saginata (Beef Tapeworm), Taenia solium (Pork Tapeworm), Diphyllobothrium latum (Fish Tapeworm), Fasciolopsis buski (large intestinal fluke). Niclosamide is also used as a molluscicide in the control of schistosomiasis. Niclosamide was marketed under the trade name Niclocide, now discontinued.
Status:
US Previously Marketed
Source:
ZANOSAR by TEVA PHARMS USA
(1982)
Source URL:
First approved in 1982
Source:
ZANOSAR by TEVA PHARMS USA
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Streptozotocin (Streptozocin, STZ, Zanosar) is a naturally occurring chemical that is particularly toxic to the insulin-producing beta cells of the pancreas in mammals. It is used in medicine for treating certain cancers of the Islets of Langerhans and used in medical research to produce an animal model for hyperglycemia in a large dose as well as Type 1 diabetes with multiple low doses. Streptozocin inhibits DNA synthesis in bacterial and mammalian cells. In bacterial cells, a specific interaction with cytosine moieties leads to degradation of DNA. The biochemical mechanism leading to mammalian cell death has not been definitely established; streptozocin inhibits cell proliferation at a considerably lower level than that needed to inhibit precursor incorporation into DNA or to inhibit several of the enzymes involved in DNA synthesis. Although streptozocin inhibits the progression of cells into mitosis, no specific phase of the cell cycle is particularly sensitive to its lethal effects. Streptozocin is active in the L1210 leukemic mouse over a fairly wide range of parenteral dosage schedules. In experiments in many animal species, streptozocin induced a diabetes that resembles human hyperglycemic nonketotic diabetes mellitus. This phenomenon, which has been extensively studied, appears to be mediated through a lowering of beta cell nicotinamide adenine dinucleotide (NAD) and consequent histopathologic alteration of pancreatic islet beta cells. The metabolism and the chemical dissociation of streptozocin that occurs under physiologic conditions has not been extensively studied. When administered intravenously to a variety of experimental animals, streptozocin disappears from the blood very rapidly. In all species tested, it was found to concentrate in the liver and kidney. As much as 20% of the drug (or metabolites containing an N-nitrosourea group) is metabolized and/or excreted by the kidney. Metabolic products have not yet been identified.
Status:
US Previously Marketed
Source:
CEFOBID by PFIZER
(1995)
Source URL:
First approved in 1982
Source:
CEFOBID by PFIZER
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Cefoperazone (marketed under the name Cefobid) is a third-generation cephalosporin antibiotic. Cefoperazone has a broad spectrum of activity: Respiratory Tract Infections caused by S. pneumoniae, H. influenzae, S. aureus (penicillinase and non-penicillinase producing strains), S. pyogenes (Group A beta-hemolytic streptococci), P. aeruginosa, Klebsiella pneumoniae, E. coli, Proteus mirabilis, and Enterobacter species. Peritonitis and Other Intra-abdominal Infections caused by E. coli, P. aeruginosa, and anaerobic gram-negative bacilli (including Bacteroides fragilis). Bacterial Septicemia caused by S. pneumoniae, S. agalactiae, S. aureus, Pseudomonas aeruginosa, E. coli, Klebsiella spp., Klebsiella pneumoniae, Proteus species (indole-positive and indole-negative), Clostridium spp. and anaerobic gram-positive cocci. Infections of the Skin and Skin Structures caused by S. aureus (penicillinase and non-penicillinase producing strains), S. pyogenes, and P. aeruginosa. Pelvic Inflammatory Disease, Endometritis, and Other Infections of the Female Genital Tract caused by N. gonorrhoeae, S. epidermidis, S. agalactiae, E. coli, Clostridium spp., Bacteroides species (including Bacteroides fragilis), and anaerobic gram-positive cocci. Cefobid has no activity against Chlamydia trachomatis. Therefore, when Cefobid is used in the treatment of patients with pelvic inflammatory disease and C. trachomatis is one of the suspected pathogens, appropriate anti-chlamydial coverage should be added. Urinary Tract Infections caused by Escherichia coli and Pseudomonas aeruginosa. Cefoperazone, a third-generation cephalosporin, interferes with cell wall synthesis by binding to the penicillin-binding proteins (PBPs), thus preventing cross-linking of nascent peptidoglycan. Cefoperazone is stable to penicillinases and has a high degree of stability to many beta-lactamases produced by gram-negative bacteria. When tested in vitro, cefoperazone has demonstrated synergistic interactions with aminoglycosides against gram-negative bacilli. As with all cephalosporins, hypersensitivity manifested by skin reactions or drug fever. Reversible neutropenia may occur with prolonged administration. Diarrhea or loose stools has been reported also.
Status:
US Previously Marketed
Source:
GUANABENZ ACETATE by CHARTWELL RX
(1998)
Source URL:
First approved in 1982
Source:
WYTENSIN by WYETH AYERST
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Guanabenz, an antihypertensive agent for oral administration-, is an aminoguanidine derivative, 2,'6-dichlorobenzylideneamina-guanidine acetate. It is white to an almost white powder having not more than a slight odor. Sparingly soluble in water and in 0.1 N hydrochloric acid; soluble in alcohol and in propylene glycol.
Guanabenz is an orally active central alpha-2 adrenergic agonist. Its antihypertensive action appears to be mediated via stimulation of central alpha-adrenergic receptors, resulting in a decrease of sympathetic outflow from the brain at the bulbar level to the peripheral circulatory system. In clinical trials, guanabenz acetate, given orally to hypertensive patients, effectively controlled blood pressure without any significant effect on glomerular filtration rate, renal blood flow, body fluid volume or body weight. The Myelin Repair Foundation and the National Institutes of Health (National Institute of Neurological Disorders and Stroke) are developing guanabenz for the treatment of multiple sclerosis. Unlike the currently available treatment for multiple sclerosis that suppresses the immune system, guanabenz, an FDA approved the drug for the treatment of high blood pressure, has a potential to reduce the loss of myelin by protecting and repairing myelin-producing cells in the brain from damage. Phase I development is underway in the US.
Status:
US Previously Marketed
Source:
AZLIN by BAYER PHARMS
(1982)
Source URL:
First approved in 1982
Source:
AZLIN by BAYER PHARMS
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Azlocillin is a semisynthetic penicillin with broad spectrum of anti-bacterial action. The drug is effective against gram-negative and gram-positive infections and acts by inhibition of penicillin-binding protein (PBP)-dependent bacterial cell wall synthesis. Azlocillin was marketed in the USA under the name Azlin (sodium salt), however, its approval was discontinued.
Status:
US Previously Marketed
Source:
HYLOREL by PHARMACIA AND UPJOHN
(1982)
Source URL:
First approved in 1982
Source:
HYLOREL by PHARMACIA AND UPJOHN
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
Conditions:
Guanadrel is a postganglionic adrenergic blocking agent. Uptake of guanadrel and storage in sympathetic neurons occurs via the norepinephrine pump or transporter. Guanadrel slowly displaces norepinephrine from its storage in nerve endings and thereby blocks the release of norepinephrine normally produced by nerve stimulation. The reduction in neurotransmitter release in response to sympathetic nerve stimulation, as a result of catecholamine depletion, leads to reduced arteriolar vasoconstriction, especially the reflex increase in sympathetic tone that occurs with a change in position. Guanadrel is used to treat and control hypertension.