{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Search results for "EMA EPAR|DISEASES" in comments (approximate match)
Status:
US Approved OTC
Source:
21 CFR 348.10(a)(2) external analgesic:male genital desensitizer lidocaine
Source URL:
First approved in 1948
Source:
NDA006488
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Lidocaine is a local anesthetic and cardiac depressant used to numb tissue in a specific area and for management of cardiac arrhythmias, particularly those of ventricular origins, such as occur with acute myocardial infarction. Lidocaine alters signal conduction in neurons by blocking the fast voltage-gated Na+ channels in the neuronal cell membrane responsible for signal propagation. With sufficient blockage, the membrane of the postsynaptic neuron will not depolarize and will thus fail to transmit an action potential. This creates the anesthetic effect by not merely preventing pain signals from propagating to the brain, but by stopping them before they begin. Careful titration allows for a high degree of selectivity in the blockage of sensory neurons, whereas higher concentrations also affect other modalities of neuron signaling. Lidocaine exerts an antiarrhythmic effect by increasing the electrical stimulation threshold of the ventricle during diastole. In usual therapeutic doses, lidocaine hydrochloride produces no change in myocardial contractility, in systemic arterial pressure, or an absolute refractory period. The efficacy profile of lidocaine as a local anesthetic is characterized by a rapid onset of action and intermediate duration of efficacy. Therefore, lidocaine is suitable for infiltration, block, and surface anesthesia. Longer-acting substances such as bupivacaine are sometimes given preference for spinal and epidural anesthesias; lidocaine, though, has the advantage of a rapid onset of action. Lidocaine is also the most important class-1b antiarrhythmic drug; it is used intravenously for the treatment of ventricular arrhythmias (for acute myocardial infarction, digoxin poisoning, cardioversion, or cardiac catheterization) if amiodarone is not available or contraindicated. Lidocaine should be given for this indication after defibrillation, CPR, and vasopressors have been initiated. A routine preventative dose is no longer recommended after a myocardial infarction as the overall benefit is not convincing. Inhaled lidocaine can be used as a cough suppressor acting peripherally to reduce the cough reflex. This application can be implemented as a safety and comfort measure for patients who have to be intubated, as it reduces the incidence of coughing and any tracheal damage it might cause when emerging from anesthesia. Adverse drug reactions (ADRs) are rare when lidocaine is used as a local anesthetic and is administered correctly. Most ADRs associated with lidocaine for anesthesia relate to administration technique (resulting in systemic exposure) or pharmacological effects of anesthesia, and allergic reactions only rarely occur. Systemic exposure to excessive quantities of lidocaine mainly result in a central nervous system (CNS) and cardiovascular effects – CNS effects usually occur at lower blood plasma concentrations and additional cardiovascular effects present at higher concentrations, though cardiovascular collapse may also occur with low concentrations.
Status:
US Previously Marketed
Source:
TECHNIVIE by ABBVIE
(2015)
Source URL:
First approved in 2015
Source:
TECHNIVIE by ABBVIE
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Ombitasvir (ABT-267) is an antiviral drug for the treatment of hepatitis C virus (HCV) infection. Ombitasvir is a potent inhibitor of the hepatitis C virus protein NS5A, has favorable pharmacokinetic characteristics and is active in the picomolar range against genotype 1 - 6. In 2015, it was approved by FDA for use in combination with paritaprevir, ritonavir and dasabuvir in the product Viekira Pak for the treatment of HCV genotype 1.
Status:
US Previously Marketed
Source:
TECHNIVIE by ABBVIE
(2015)
Source URL:
First approved in 2014
Source:
VIEKIRA PAK (COPACKAGED) by ABBVIE
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Paritaprevir is a potent inhibitor of the NS3/4A protease that rapidly and consistently suppresses HCV. Paritaprevir is metabolized by the Cytochrome P450 isoform 3A (CYP3A); therefore, ritonavir was used concurrently to increase plasma concentrations and to prolong the half-life of this agent allowing for once-daily dosing. Several antiviral regimens combining paritaprevir with other agents have shown impressive results, tolerable side effects, and importantly, provided support of ‘all-oral’ interferon-free regimens against HCV. Paritaprevir monotherapy is discontinued now but paritaprevir is used as a component of Viekira Pak and Technivie for the treatment of patients with genotype 1 chronic hepatitis C virus (HCV) infection.
Status:
US Previously Marketed
Source:
POTIGA by GLAXOSMITHKLINE
(2011)
Source URL:
First approved in 2011
Source:
POTIGA by GLAXOSMITHKLINE
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Ezogabine (U.S. adopted name) or retigabine (international nonproprietary name) is one of a family of aminopyrroles with anticonvulsant activity. It is used as an adjunctive treatment for partial epilepsies in treatment-experienced adult patients. The drug was approved by the European Medicines Agency under the trade name Trobalt and by the United States Food and Drug Administration (FDA), under the trade name Potiga. The mechanism by which ezogabine exerts its therapeutic effects has not been fully elucidated. In vitro studies indicate that ezogabine enhances transmembrane potassium currents mediated by the KCNQ (Kv7.2 to 7.5) family of ion channels. By activating KCNQ channels, ezogabine is thought to stabilize the resting membrane potential and reduce brain excitability. This mechanism of action is unique among antiepileptic drugs, and may hold promise for the treatment of other neurologic conditions, including migraine, tinnitus and neuropathic pain. In vitro studies suggest that ezogabine may also exert therapeutic effects through augmentation of GABA-mediated currents.
Status:
US Previously Marketed
Source:
VICTRELIS by MERCK SHARP DOHME
(2011)
Source URL:
First approved in 2011
Source:
VICTRELIS by MERCK SHARP DOHME
Source URL:
Class (Stereo):
CHEMICAL (EPIMERIC)
Conditions:
Boceprevir (trade name Victrelis) is first-generation, selective, small molecule inhibitor of the non-structural serine protease (NS3) and NS4A polypeptide complex (NS3/NS4A) and is a direct acting antiviral drug against the hepatitis C virus. It is indicated the treatment of chronic hepatitis C (CHC) genotype 1 infection, in combination with peginterferon alfa and ribavirin, in adult patients (18 years of age and older) with compensated liver disease, including cirrhosis, who are previously untreated or who have failed previous interferon and ribavirin therapy. Boceprevir is not approved as a monotherapy. Upon administration, boceprevir reversibly binds to the active center of the HCV NS3/NS4A and prevents NS3/NS4A protease-mediated polyprotein maturation. This disrupts the processing of viral proteins and the formation of a viral replication complex, which inhibits viral replication in HCV genotrype 1-infected host cells. NS3, a serine protease, is essential for the proteolytic cleavages within the HCV polyprotein and plays a key role during HCV viral RNA replication. NS4A is an activating factor for NS3.
Status:
US Previously Marketed
Source:
ARCAPTA NEOHALER by NOVARTIS
(2011)
Source URL:
First approved in 2011
Source:
ARCAPTA NEOHALER by NOVARTIS
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Indacaterol is an ultra-long-acting beta-adrenoceptor agonist developed by Novartis. It was approved by the European Medicines Agency (EMA) under the trade name Onbrez Breezhaler on November 30, 2009, and by the United States Food and Drug Administration (FDA), under the trade name Arcapta Neohaler, on July 1, 2011. It needs to be taken only once a day, unlike the related drugs formoterol and salmeterol. It is licensed only for the treatment of chronic obstructive pulmonary disease (COPD) (long-term data in patients with asthma are thus far lacking). It is delivered as an aerosol formulation through a dry powder inhaler.
Status:
US Previously Marketed
Source:
INCIVEK by VERTEX PHARMS
(2011)
Source URL:
First approved in 2011
Source:
INCIVEK by VERTEX PHARMS
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Telaprevir (marketed under the brand names Incivek and Incivo) is a direct-acting antiviralagent against the hepatitis C virus (HCV). It is a hepatitis C virus NS3/4A protease inhibitor indicated for the treatment of genotype 1 chronic hepatitis C (CHC) in adult patients with compensated liver disease, including cirrhosis, who are treatment-naïve or who have been previously treated with interferon-based treatment, including prior null responders, partial responders, and relapsers in combination with peginterferon alfa and ribavirin. Telaprevir is not used as a monotherapy. It is necessary for the proteolytic cleavage of the HCV encoded polyprotein into mature forms of the NS4A, NS4B, NS5A and NS5B proteins and essential for viral replication. It belongs to the chemical class of alpha-ketoamids and binds to NS3/4A in a covalent but reversible manner.
Status:
US Previously Marketed
Source:
DORIBAX by SHIONOGI INC
(2007)
Source URL:
First approved in 2007
Source:
DORIBAX by SHIONOGI INC
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Doripenem is a synthetic carbapenem that has broad antibacterial potency against aerobic and anaerobic gram-positive and gram-negative bacteria. Doripenem is structurally related to beta-lactam antibiotics and shares the bactericidal mode of action of other β-lactam antibiotics by targeting penicillin-binding proteins (PBPs) to inhibit the biosynthesis of the bacterial cell wall. Doripenem is resistant to hydrolysis by most β-lactamases and is resistant to inactivation by renal dehydropeptidases. Doripenem has many similarities to the other carbapenems, as well as some important differences, such as greater potency against Pseudomonas aeruginosa. It was found to be similar to comparator agents. The most common adverse effects related to doripenem therapy were headache, nausea, diarrhea, rash, and phlebitis.
Status:
US Previously Marketed
Source:
TYZEKA by NOVARTIS
(2006)
Source URL:
First approved in 2006
Source:
TYZEKA by NOVARTIS
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Telbivudine is an antiviral drug used in the treatment of hepatitis B infection. It is marketed by Swiss pharmaceutical company Novartis under the trade names Sebivo (Europe) and Tyzeka (United States). Clinical trials have shown it to be significantly more effective than lamivudine or adefovir, and less likely to cause resistance. Telbivudine is a synthetic thymidine nucleoside analogue; it is the L-isomer of thymidine. It is taken orally in a dose of 600 mg once daily with or without food. TYZEKA is the trade name for telbivudine, a synthetic thymidine nucleoside analogue with activity against hepatitis B virus (HBV). The chemical name for telbivudine is 1-((2S,4R,5S)-4-hydroxy-5-hydroxymethyltetrahydrofuran-2-y1)-5-methyl-1H-pyrimidine-2,4-dione, or 1-(2-deoxy-β-L-ribofuranosyl)-5-methyluracil. Telbivudine is a synthetic thymidine nucleoside analogue with activity against HBV DNA polymerase. It is phosphorylated by cellular kinases to the active triphosphate form, which has an intracellular half-life of 14 hours. Telbivudine 5'-triphosphate inhibits HBV DNA polymerase (reverse transcriptase) by competing with the natural substrate, thymidine 5'-triphosphate. Incorporation of telbivudine 5'-triphosphate into viral DNA causes DNA chain termination, resulting in inhibition of HBV replication. Telbivudine is an inhibitor of both HBV first strand (EC50 value = 1.3 ± 1.6 µM) and second strand synthesis (EC50 value = 0.2 ± 0.2 µM). Telbivudine 5'-triphosphate at concentrations up to 100 µM did not inhibit human cellular DNA polymerases α, β, or γ. No appreciable
mitochondrial toxicity was observed in HepG2 cells treated with telbivudine at concentrations up to 10 µM.
Status:
US Previously Marketed
Source:
KETEK by SANOFI AVENTIS US
(2004)
Source URL:
First approved in 2004
Source:
KETEK by SANOFI AVENTIS US
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
French pharmaceutical company Hoechst Marion Roussel (later Sanofi-Aventis) began phase II/III clinical trials of telithromycin (HMR-3647) in 1998. Telithromycin was approved by the European Commission in July 2001 and subsequently went on sale in October 2001. In the US, telithromycin received U.S. Food and Drug Administration (FDA) approval on April 1, 2004 Telithromycin is the first ketolide antibiotic to enter clinical use and is sold under the brand name of Ketek. After significant controversy regarding safety and research fraud, the US Food and Drug Administration sharply curtailed the approved uses of the drug in 2007. Telithromycin is a semi-synthetic erythromycin derivative. It is created by substituting a ketogroup for the cladinose sugar and adding a carbamate ring in the lactone ring. An alkyl-aryl moiety is attached to this carbamate ring. Furthermore, the carbon at position 6 has been methylated, as is the case in clarithromycin, to achieve better acid-stability. For the treatment of Pneumococcal infection, acute sinusitis, acute bacterial tonsillitis, acute bronchitis and bronchiolitis, lower respiratory tract infection and lobar (pneumococcal) pneumonia. KETEK tablets contain telithromycin, a semisynthetic antibacterial in the ketolide class for oral administration. Telithromycin blocks protein synthesis by binding to domains II and V of 23S rRNA of the 50S ribosomal subunit. By binding at domain II, telithromycin retains activity against gram-positive cocci (e.g., Streptococcus pneumoniae) in the presence of resistance mediated by methylases (erm genes) that alter the domain V binding site of telithromycin. Telithromycin may also inhibit the assembly of nascent ribosomal units.