U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 1191 - 1200 of 24423 results

Status:
Investigational
Source:
NCT01915576: Phase 1 Interventional Completed Neoplasms
(2013)
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)


Conditions:

BAY-1125976 is an orally bioavailable inhibitor of the serine/threonine protein kinase AKT (protein kinase B) isoforms 1 and 2 (AKT1/2) with potential antineoplastic activity. AKT1/2 inhibitor BAY1125976 selectively binds to and inhibits the phosphorylation and activity of AKT1/2 in a non-ATP competitive manner, which may result in the inhibition of the phosphatidylinositol 3 (PI3K)/AKT/mammalian target of rapamycin (mTOR) signaling pathway. This may lead to both the reduction of cell proliferation and the induction of cell apoptosis in AKT-overexpressing tumor cells. The AKT signaling pathway is often deregulated in cancer and is associated with tumor cell proliferation, survival, and migration. BAY 1125976 is equally potent against Akt1 and Akt2 isoforms and up to 86 fold less potent against Akt3 It inhibits the Akt1 and Akt2 by binding into an allosteric binding pocket formed by kinase and PH domain. It inhibits cell proliferation in a broad panel of human cancer cell lines, particularly in breast and prostate cancer cell lines expressing estrogen or androgen receptors. It effectively blocks Akt signaling by inhibiting the phosphorylation of Akt and the downstream effectors, including eukaryotic translation initiation factor 4E binding protein 1 (4E-BP1), glycogen synthase kinase 3 beta (GSK3s), proline-rich Akt substrate 40 kDa (PRAS40), S6 ribosomal protein (S6RP), and 70 kDa ribosomal protein S6 kinase 1 (70S6K). BAY 1125976 exhibits strong in vivo efficacy in both cell line and patient-derived xenograft models such as the KPL4 breast cancer model (PIK3CAH1074R mutant), the MCF7 and HBCx-2 breast cancer models, and the AktE17K mutant driven prostate cancer (LAPC-4) and anal cancer (AXF 984) models.
Status:
Investigational
Source:
NCT01525212: Phase 1 Interventional Withdrawn Chronic Hepatitis C
(2012)
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)

Bristol-Myers Squibb developed BMS-929075 as a selective, orally bioavailable hepatitis C virus (HCV) NS5B polymerase inhibitor for the treatment of chronic HCV infection. BMS-929075 was involved in phase I clinical trials for hepatitis C virus (HCV) infected patients; however, the company withdrew a study prior to enrolment.
Status:
Investigational
Source:
NCT02254707: Phase 1/Phase 2 Interventional Completed Hepatitis C, Chronic
(2004)
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)

Status:
Investigational
Source:
NCT00827190: Phase 1 Interventional Completed Acute Ischemic Stroke
(2009)
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)

ILS 920 (previously known as WAY-265920) was developed for the treatment of stroke. ILS-920 binds selectively to the immunophilin FKBP52 and to the β1-subunit of L-type voltage-gated calcium channels (VGCC). ILS 920 successfully completed phase I clinical trial where was determine the safety, tolerability, pharmacokinetics, and pharmacodynamics after administration of ascending single intravenous (IV) doses to healthy adult subjects. However, information about the further development of this drug is not available.
Status:
Investigational
Source:
NCT03174795: Phase 1 Interventional Completed Urinary Tract Infections
(2017)
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)


Nacubactam (FPI-1459) was developed as an antibacterial drug. Nacubactam successfully has completed phase I clinical trials for the treatment of serious gram-negative bacterial infections. The drug is currently being developed for the treatment of complicated urinary tract infection, hospital-acquired bacterial pneumonia, ventilator-associated bacterial pneumonia, and complicated intra-abdominal infections. FPI-1459 works through several mechanisms of action, inhibiting a number of beta-lactamase enzymes as well as certain bacterial cell wall enzymes. In January 2019, FPI-1459 received Fast Track and Qualified Infectious Disease Product designations from the U.S. Food and Drug Administration (FDA).
Status:
Investigational
Source:
NCT03373383: Phase 2 Interventional Completed Drug-resistant Epilepsy
(2018)
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)

Status:
Investigational
Source:
NCT00725933: Phase 1 Interventional Completed Advanced Solid Tumors
(2008)
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)

(S,R)-3-Phenyl-4,5-dihydro-5-isoxasole acetic acid (VGX-1027, GIT-027) is an isoxazole compound that exhibits various immunomodulatory properties. This compound reduced the secretion of IL-1beta, TNF-alpha and IL-10 from purified murine macrophages stimulated "in vitro" with lipopolysaccharide (LPS), and it also modified the signaling pathways induced in these cells by LPS entailing reduced activation of NF-kappaB and p38 MAP kinase pathways along with up-regulation of ERK pathways. The animals receiving VGX-1027 exhibited reduced production of the proinflammatory mediators tumor necrosis factor-alpha, IL-1beta, macrophage migration inhibitory factor, and inducible nitric-oxide synthase-mediated nitric oxide generation in both pancreatic islets and peripheral compartments. Inovio Pharmaceuticals is developing VGX-1027 for the treatment of inflammatory conditions such as rheumatoid arthritis, type 1 diabetes mellitus, uveitis and ulcerative colitis.
Status:
Investigational
Source:
NCT00686803: Phase 2 Interventional Completed Hypertension
(2008)
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)

PL-3994 is a novel natriuretic cyclic peptide. It is a receptor-A (NPR-A) and receptor-C (NPR-C) agonist. PL-3994 has high affinity for recombinant human, dog, or rat NPR-As. PL-3994 produced concentration-dependent relaxation of pre-contracted guinea-pig trachea. PL-3994 elicited a potent, concentration-dependent but small relaxation of pre-contracted human precision-cut lung slices. Intratracheal PL-3994 produced a dose-dependent inhibition of the bronchoconstrictor response evoked by aerosolized methacholine, but was without significant effect on cardiovascular parameters. PL-3994 was resistant to degradation by human neutral endopeptidase. PL-3994 was well tolerated in subjects with controlled hypertension. A phase I and phase II trial have been successfully completed with PL-3994 with no safety concerns identified. In phase II study in subjects with hypertension who were receiving >1 antihypertensive medications, a significant reduction in blood pressure compared with placebo was observed. It appears that PL-3994 works synergistically with ACE inhibitors.
Status:
Investigational
Source:
NCT01047943: Phase 1/Phase 2 Interventional Completed Psoriasis
(2007)
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)

Showing 1191 - 1200 of 24423 results