{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Search results for penicillin root_names_stdName in Standardized Name (approximate match)
4-Methoxyamphetamine (Para-methoxyamphetamine, PMA) is a synthetic drug chemically similar to the recreational drug 3,4-methylenedioxymethamphetamine (MDMA or "ecstasy") and often replaces MDMA in tablets. Numerous cases of intoxication have been documented and fatal cases involving PMA have been described. PMA induces toxicity at lower doses than MDMA. Clinical symptoms specific to PMA poisoning include life-threatening hyperthermia, breathing difficulties, tachycardia, rhabdomyolysis, and acute renal failure. In the scarce studies conducted in laboratory animals, PMA has shown cardiovascular alterations in dogs, hyperthermia on a high ambient temperature, hallucinogen properties, and disruption of operant behavior in rats. A slight motor activity stimulation, lower than that induced by MDMA, has also been reported. The effects of PMA on brain neurotransmission are similar to those of MDMA, thus, PMA increases serotonin (5-hydroxytryptophan or 5-HT) release from the synaptic terminal and blocks its reuptake; it also acts upon noradrenergic and dopaminergic terminals but in a lesser proportion, and can also delay the metabolism of these monoamines by inhibition of monoamine oxidase (MAO)
Status:
Other
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
10-deactyltaxol (10-deacetylpaclitaxel) is a naturally occurring taxane related to taxol (paclitaxel). Taxol is an antitumor drug with cytotoxic properties that correlate with its microtubule-stabilizing activities. When compared to paclitaxel 10-deacetyltaxol is 100% as active as paclitaxel in promoting in vitro microtubule assembly, but is only 30% as cytotoxic as paclitaxel. 10-deactyltaxol is a semi-synthetic precursor of paclitaxel and considered to be paclitaxel impurity. 10-deactyltaxol, isolated from the bark of Taxus brevifolia, was converted into paclitaxel in one composite step (trimethylsilylation, acetylation, and desilylation) and in an overall yield of 80-85%.