{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Search results for "Pharmacologic Substance[C1909]|Enzyme Inhibitor[C471]|Protein Kinase Inhibitor[C1404]" in comments (approximate match)
Status:
Investigational
Source:
NCT03230318: Phase 2 Interventional Completed Intrahepatic Cholangiocarcinoma
(2017)
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Derazantinib (ARQ 087) is an investigational, oral, multi-kinase inhibitor designed to preferentially inhibit the FGFR family of kinases with demonstrated activity in FGFR2 genetic alterations, including fusions. In human cancers, FGFRs have been found to be dysregulated by multiple mechanisms, including aberrant expression, mutations, chromosomal rearrangements, and amplifications. FGFR dysregulation has been identified as a driver in a number of cancers, including iCCA, cholangiocarcinoma, bladder, endometrial, breast, gastric, lung and ovarian. Current scientific literature suggests FGFR alterations exist in anywhere from 5% to 40% of these cancers. Derazantinib is a potent FGFR inhibitor that shows strong anti-proliferative activity in cell lines harboring FGFR2 alterations. In clinical testing, the molecule has demonstrated activity in cancerous tumors harboring FGFR2 fusions in iCCA and bladder cancers.
Status:
Investigational
Source:
NCT03099148: Phase 1 Interventional Completed Healthy
(2017)
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Status:
Investigational
Source:
NCT03906071: Phase 3 Interventional Active, not recruiting Metastatic Non-Squamous Non-Small Cell Lung Cancer
(2019)
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Sitravatinib (MGCD516) is a receptor tyrosine kinases (RTK) inhibitor that blocks a wide array of RTKs known to be amplified/overexpressed in sarcomas, which are key regulators of signaling pathways that lead to cell growth, survival and tumor progression. It is involved in driving sarcoma cell growth with IC50 of 3980 nM and is superior to other multi-kinase inhibitors in inhibiting cell proliferation, RTK phosphorylation, and phosphorylation of downstream effectors. The efficacy of sitravatinib was tested using a wide panel of sarcoma cell lines, including malignant peripheral nerve sheath tumor (MPNST), Ewing sarcoma (A673), osteosarcoma (Saos2), and liposarcoma (DDLS, LS141). Both in vitro and in vivo efficacy sitravatinib was significantly better that the other two multi-kinase inhibitors, imatinib and crizotinib. Sitravatinib treatment not only inhibits tumor cell proliferation at low nanomolar concentrations in vitro but also results significant tumor growth suppression in vivo in mouse xenograft models. Sitravatinib is being evaluated in a Phase 1b dose expansion cohort in selected patients with specific genetic alterations that are drivers of tumor growth, with an initial focus on Non-Small-Cell Lung carcinoma (NSCLC) and in other solid tumors where sitravatinib may confer a benefit. Its efficacy and safety is also being tested in Phase II clinical trials in patients with advanced liposarcoma as a monotherapy and NSCLC in combination with nivolumab.
Status:
Investigational
Source:
NCT02228811: Phase 1 Interventional Terminated Locally Advanced Tumors
(2014)
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Altiratinib, a novel c-MET/TIE-2/VEGFR inhibitor, was able to effectively reduce tumor burden in vivo and block c-MET signaling, cell growth and migration. Altiratinib inhibits not only mechanisms of tumor initiation and progression, but also drug resistance mechanisms in the tumor and microenvironment. Altiratinib durably inhibits MET, both wild-type and mutated forms, in vitro and in vivo. Altiratinib exhibits properties amenable to oral administration and exhibits substantial blood-brain barrier penetration, an attribute of significance for eventual treatment of brain cancers and brain metastases. It is currently in Phase 1 clinical development for the treatment of solid tumors.
Status:
Investigational
Source:
NCT03100942: Phase 2 Interventional Completed Sjogren's Syndrome
(2017)
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Tirabrutinib (also known as ONO-4059 or GS-4059), a second-generation, enhanced-selectivity Bruton's tyrosine kinase inhibitor that demonstrated antitumor activity in preclinical models. Tirabrutinib participated in phase I clinical trial in patients with relapsed or refractory B-cell malignancies, where it was well tolerated and showed promising efficacy. In addition, tirabrutinib is involved in phase II clinical trials to study safety and efficacy in adults with Active Sjogren's syndrome and in adults with chronic lymphocytic leukemia. Besides the drug was studied for the treatment of Waldenstrom's macroglobulinemia and patients with refractory pemphigus.
Status:
Investigational
Source:
NCT02138812: Phase 1 Interventional Terminated Medical Oncology
(2014)
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Empesertib (previously known as BAY-1161909) was developed as a selective inhibitor of the serine/threonine monopolar spindle 1 (Mps1) kinase for the treatment of cancer. Empesertib participated in phase I clinical trials in combination with paclitaxel in subjects with advanced malignancies. The studies were terminated because another more successful Mps1 inhibitor was being developed in parallel.
Status:
Investigational
Source:
NCT02349633: Phase 1/Phase 2 Interventional Terminated Non-Small Cell Lung Cancer
(2015)
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
PF-06747775 is an irreversible pyrrolopyrimidine inhibitor of epidermal growth factor receptor (EGFR) T790M mutants which provides potent EGFR activity against the four common mutants (exon 19 deletion (Del), L858R, and double mutants T790M/L858R and T790M/Del), selectivity over wild-type EGFR, and desirable ADME properties. The third-generation class of EGFR tyrosine kinase inhibitors PF-06747775 is a clinical candidate drug for treatment of non-small-cell lung cancer (NSCLC) driven by mutant EGFR.
Status:
Investigational
Source:
NCT00427349: Phase 2 Interventional Completed Gastrointestinal Carcinoid Tumor
(2008)
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Motesanib (AMG 706), a novel nicotinamide, was identified as a potent, orally bioavailable inhibitor of the VEGFR1/Flt1, VEGFR2/kinase domain receptor/Flk-1, VEGFR3/Flt4 and Kit receptors. Motesanib was expected to reduce vascular permeability and blood flow in human tumours. A phase III trial of motesanib in combination with paclitaxel and carboplatin in non-squamous NSCLC has been terminated by Takeda and subsequently the development was discontinued. Motesanib has also been investigated up to phase II in breast, thyroid, colorectal and gastrointestinal stromal tumours. However, development has been discontinued in these indications.
Status:
Investigational
Source:
NCT04538066: Phase 2 Interventional Completed Alzheimer Disease
(2020)
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Bryostatin 1 is a macrocyclic lactone which can be isolated from the marine bryozoan, Bugula neritina. The effects of bryostatin 1 are attributed to its ability to selectively modulate the activity of two of the three subgroups of protein kinase C (PKC) isozymes. PKC isozymes are divided into three subgroups which differ in their molecular structures and co-factor requirements: classical PKC (cPKC), novel PKC (nPKC), and atypical PKC (aPKC). Bryostatin-1 modulates nPKC activity independent of a Ca2+ signaling. It activates cPKC only when associated with Ca2+ signaling. And, aPKC activity is not sensitive to bryostatin-1 administration. Ca2+ signals play an important role in synaptic transmission and information processing which creates a biological environment where Bryostatin-1 possesses a unique action profile. Bryostatin-1 will not affect cPKC activity in neurons which are not functioning as an active part of the signaling processing circuit with significant Ca2+influx and intracellular Ca2+ release. Bryostatin 1 is in phase II clinical trials for investigation as an anticancer agent; specifically for treatment of metastatic or recurrent head and neck cancer, ovarian epithelial cancer that has not responded to previous chemotherapy, and myelodysplastic syndrome. Bryostatin 1 has also generated interest as an investigational compound for the treatment of Alzheimer's disease.
Status:
Investigational
Source:
NCT02442414: Phase 1 Interventional Completed Advanced Solid Tumors
(2015)
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)