{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Search results for "Cellular or Molecular Interactions [MoA]|Enzyme Interactions [MoA]" in comments (approximate match)
Status:
US Approved Rx
(2017)
Source:
ANDA206136
(2017)
Source URL:
First approved in 1982
Source:
NDA018147
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Piroxicam is in a class of drugs called nonsteroidal anti-inflammatory drugs (NSAIDs). It was originally brought to market by Pfizer under the tradename Feldene in 1980, became generic in 1992, and is marketed worldwide under many brandnames. Piroxicam works by reducing hormones that cause inflammation and pain in the body. Piroxicam is used to reduce the pain, inflammation, and stiffness caused by rheumatoid arthritis and osteoarthritis. The antiinflammatory effect of Piroxicam may result from the reversible inhibition of cyclooxygenase, causing the peripheral inhibition of prostaglandin synthesis. The prostaglandins are produced by an enzyme called Cox-1. Piroxicam blocks the Cox-1 enzyme, resulting into the disruption of production of prostaglandins. Piroxicam also inhibits the migration of leukocytes into sites of inflammation and prevents the formation of thromboxane A2, an aggregating agent, by the platelets. Piroxicam is used for treatment of osteoarthritis and rheumatoid arthritis.
Status:
US Approved Rx
(2017)
Source:
ANDA203547
(2017)
Source URL:
First approved in 1982
Source:
DOLOBID by MERCK
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Diflunisal is a salicylic acid derivative with analgesic and anti-inflammatory activity. It was developed by Merck Sharp & Dohme in 1971 after showing promise in a research project studying more potent chemical analogs of aspirin. Diflunisal is an aspirin-like nonsteroidal anti-inflammatory drug that inhibits cyclooxygenase-2 (COX-2), an enzyme involved in prostaglandin synthesis.In animals, prostaglandins sensitize afferent nerves and potentiate the action of bradykinin in inducing pain. Since prostaglandins are known to be among the mediators of pain and inflammation, the mode of action of diflunisal may be due to a decrease of prostaglandins in peripheral tissues.
Status:
US Approved Rx
(2012)
Source:
ANDA091559
(2012)
Source URL:
First approved in 1982
Source:
OVIDE by TARO
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
Targets:
Conditions:
Malathion is an organophosphate insecticide, an inhibitor of cholinesterase. In low doses (0.5%) malathion is used for treatment of pediculosis and scabies.
Status:
US Approved Rx
(2010)
Source:
ANDA090146
(2010)
Source URL:
First approved in 1982
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Ciclopirox is an antifungal medication indicated for the treatment of seborrheic dermatitis (Loprox trade name) and onychomycosis of fingernails and toenails due to Trichophyton rubrum (Penlac trade name). The drug exerts its action by chelating Fe3+ and Al3+, resulting in the inhibition of the metal-dependent enzymes that are responsible for the degradation of peroxides within the fungal cell.
Status:
US Approved Rx
(1998)
Source:
ANDA074737
(1998)
Source URL:
First approved in 1981
Source:
CAPOTEN by STRIDES PHARMA
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Pivalopril (RHC 3659-(S); (S)-N-cyclopentyl-N-(2-methyl-3-pivaloylthiopropionyl) glycine) is an angiotensin-converting enzyme (ACE) inhibitor with antihypertensive activity. Upon hydrolysis, the free SH metabolite of pivopril competitively binds to and inhibits ACE, thereby blocking the conversion of angiotensin I to angiotensin II. This prevents the potent vasoconstrictive actions of angiotensin II and results in vasodilation. Pivopril also decreases angiotensin II-induced aldosterone secretion by the adrenal cortex, which leads to an increase in sodium excretion and subsequently increases water outflow. Pivalopril has been compared to captopril for oral angiotensin-converting enzyme (ACE) inhibition in rats and dogs and antihypertensive activity in rats. In separate groups of conscious normotensive rats, pivalopril (0.03-1.0 mg/kg, orally [p.o.]) produced a dose-related antagonism of angiotensin I (AngI)-induced pressor effects. The ED50 for pivalopriland captopril was 0.1 mg/kg. Pivalopril has being shown to be a potent, orally effective ACE inhibitor and antihypertensive agent.
Status:
US Approved Rx
(1998)
Source:
NDA050731
(1998)
Source URL:
First approved in 1979
Source:
CERUBIDINE by WYETH AYERST
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Daunorubicin, also known as daunomycin, is a chemotherapy medication used to treat cancer. Specifically, it is used for acute myeloid leukemia (AML), acute lymphocytic leukemia (ALL), chronic myelogenous leukemia (CML), and Kaposi's sarcoma. Similar to doxorubicin, daunorubicin interacts with DNA by intercalation and inhibition of macromolecular biosynthesis. This inhibits the progression of the enzyme topoisomerase II, which relaxes supercoils in DNA for transcription. Daunorubicin stabilizes the topoisomerase II complex after it has broken the DNA chain for replication, preventing the DNA double helix from being resealed and thereby stopping the process of replication. On binding to DNA, daunomycin intercalates, with its daunosamine residue directed toward the minor groove. It has the highest preference for two adjacent G/C base pairs flanked on the 5' side by an A/T base pair. Daunorubicin should only be administered in a rapid intravenous infusion. It should not be administered intramuscularly or subcutaneously, since it may cause extensive tissue necrosis. It should also never be administered intrathecally (into the spinal canal), as this will cause extensive damage to the nervous system and may lead to death.
Status:
US Approved Rx
(2020)
Source:
ANDA213734
(2020)
Source URL:
First approved in 1979
Source:
NDA017871
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Metirosine is an antihypertensive drug. Metyrosine inhibits tyrosine hydroxylase, which catalyzes the first transformation in catecholamine biosynthesis, i.e., the conversion of tyrosine to dihydroxyphenylalanine (DOPA). Because the first step is also the rate-limiting step, blockade of tyrosine hydroxylase activity results in decreased endogenous levels of catecholamines and their synthesis. This consequently, depletes the levels of the catecholamines dopamine, adrenaline and noradrenaline in the body,usually measured as decreased urinary excretion of catecholamines and their metabolites. One main end result of the catecholamine depletion is a decrease in blood presure. Metirosine is used for the treatment of patients with pheochromocytoma, for preoperative preparation of patients for surgery, management of patients when surgery is contraindicated, and chronic treatment of patients with malignant pheochromocytoma.
Status:
US Approved Rx
(1991)
Source:
ANDA072711
(1991)
Source URL:
First approved in 1978
Source:
CLINORIL by MERCK
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
Targets:
Sulindac is a nonsteroidal anti-inflammatory agent (NSAIA) of the arylalkanoic acid class that is marketed in the U.S. by Merck as Clinoril. Like other NSAIAs, it may be used in the treatment of acute or chronic inflammatory conditions. Sulindac is a prodrug, derived from sulfinylindene, that is converted in vivo to an active sulfide compound by liver enzymes. The sulfide metabolite then undergoes enterohepatic circulation; it is excreted in the bile and then reabsorbed from the intestine. This is thought to help maintain constant blood levels with reduced gastrointestinal side effects. Some studies have shown sulindac to be relatively less irritating to the stomach than other NSAIA's except for drugs of the cyclooxygenase-2 (COX-2) inhibitor class. The exact mechanism of its NSAIA properties is unknown, but it is thought to act on enzymes COX-1 and COX-2, inhibiting prostaglandin synthesis.
Status:
US Approved Rx
(1993)
Source:
ANDA074201
(1993)
Source URL:
First approved in 1976
Source:
NDA017581
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Naproxen (naproxen sodium, NAPROSYN®) is a propionic acid derivative related to the arylacetic acid group of nonsteroidal anti-inflammatory drugs (NSAIDs). It is an anti-inflammatory agent with analgesic and antipyretic properties. Both the acid and its sodium salt are used in the treatment of rheumatoid arthritis and other rheumatic or musculoskeletal disorders, dysmenorrhea, and acute gout. The mechanism of action of the naproxen (naproxen sodium, NAPROSYN®), like that of other NSAIDs, is not completely understood but involves inhibition of cyclooxygenase (COX-1 and COX-2).
Status:
US Approved Rx
(2022)
Source:
ANDA214475
(2022)
Source URL:
First approved in 1976
Source:
NALFON by KEY THERAP
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
Targets:
Fenoprofen is a propionic acid derivative with analgesic, antiinflammatory and antipyretic properties. Fenoprofen inhibits prostaglandin synthesis by decreasing the enzyme needed for biosynthesis. In patients with rheumatoid arthritis, the anti-inflammatory action of fenoprofen has been evidenced by relief of pain, increase in grip strength, and reductions in joint swelling, duration of morning stiffness, and disease activity (as assessed by both the investigator and the patient). In patients with osteoarthritis, the anti-inflammatory and analgesic effects of fenoprofen have been demonstrated by reduction in tenderness as a response to pressure and reductions in night pain, stiffness, swelling, and overall disease activity (as assessed by both the patient and the investigator). These effects have also been demonstrated by relief of pain with motion and at rest and increased range of motion in involved joints. In patients with rheumatoid arthritis and osteoarthritis, clinical studies have shown fenoprofen to be comparable to aspirin in controlling the aforementioned measures of disease activity, but mild gastrointestinal reactions (nausea, dyspepsia) and tinnitus occurred less frequently in patients treated with fenoprofen than in aspirin-treated patients. It is not known whether fenoprofen causes less peptic ulceration than does aspirin. In patients with pain, the analgesic action of fenoprofen has produced a reduction in pain intensity, an increase in pain relief, improvement in total analgesia scores, and a sustained analgesic effect. Indicated for relief of the signs and symptoms of rheumatoid arthritis and osteoarthritis. Also for the relief of mild to moderate pain.