{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Status:
US Approved Rx
(2002)
Source:
NDA021386
(2002)
Source URL:
First approved in 2001
Source:
ZOMETA by NOVARTIS
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Zoledronic acid (Reclast, Aclasta, Zometa) is an intravenous, highly potent amino-bisphosphonate approved worldwide, including in the USA, EU and Japan for use in patients with primary or secondary osteoporosis or low bone mass (approved indications vary between countries). Its high affinity to and long half-life in bone, and long duration of action allow for once-yearly administration, which has the potential to improve adherence to therapy. Zoledronic acid once yearly for up to 3 years improved bone mineral density (BMD) at several skeletal sites, reduced fracture risk and bone turnover, and/or preserved
bone structure and mass relative to placebo in clinical studies in patients with primary or secondary osteoporosis. While additional benefits were seen when treatment was continued for up to 6 years, as evidenced by a reduced risk of vertebral fractures and higher BMD relative to 3 years’ therapy, there was the minimal advantage of treatment beyond 6 years. Therefore, in patients with low fracture risk, treatment discontinuation should be considered after approximately 5 years’ therapy. Zoledronic acid administered annually or once in 2 years was also effective in preventing bone loss in patients with low bone mass. Zoledronic acid was generally well tolerated, with the most common adverse events (AEs) being transient, mild-to-moderate post-infusion symptoms, which decreased with subsequent infusions.
Status:
US Approved Rx
(2005)
Source:
ANDA077636
(2005)
Source URL:
First approved in 2000
Source:
NDA020789
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Zonisamide is an antiseizure drug chemically classified as a sulfonamide and unrelated to other antiseizure agents. The precise mechanism by which zonisamide exerts its antiseizure effect is unknown, although it is believed that the drug blocks sodium and calcium channels, which leads to the suppression of neuronal hypersynchronization (i.e. convulsions). Sonisamide has also been found to potentiate dopaminergic and serotonergic neurotransmission but does not appear to potentiate syanptic activity by GABA (gamma amino butyric acid). Zonisamide binds to sodium channels and voltage sensitive calcium channels, which suppresses neuronal depolarization and hypersynchronization. Zonisamide also inhibits carbonic anhydrase to a weaker extent, but such an effect is not thought to contribute substantially to the drug's anticonvulsant activity. Zonisamide is approved in the United States, United Kingdom, and Australia for adjunctive treatment of partial seizures in adults and in Japan for both adjunctive and monotherapy for partial seizures (simple, complex, secondarily generalized), generalized (tonic, tonic-clonic (grand mal), and atypical absence) and combined seizures.
Status:
US Approved Rx
(2013)
Source:
NDA204251
(2013)
Source URL:
First approved in 1998
Source:
NDA020816
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Brinzolamide reduces the amount of fluid in the eye, which decreases pressure inside the eye. Brinzolamide is a carbonic anhydrase inhibitor that is FDA approved for the treatment of elevated intraocular pressure in patients with ocular hypertension or open-angle glaucoma. Common adverse reactions include abnormal taste in mouth and blurred vision. The concomitant administration of brinzolamide and oral carbonic anhydrase inhibitors is not recommended. Plus, in patients treated with oral carbonic anhydrase inhibitors, rare instances of acid-base alterations have occurred with high-dose salicylate therapy.
Status:
US Approved Rx
(2018)
Source:
ANDA211088
(2018)
Source URL:
First approved in 1997
Source:
MIRAPEX by BOEHRINGER INGELHEIM
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Pramipexole is a nonergot dopamine agonist with high relative in vitro specificity and full intrinsic activity at the D2 subfamily of dopamine receptors, binding with higher affinity to D3 than to D2 or D4 receptor subtypes. The relevance of D3 receptor binding in Parkinson's disease is unknown. The precise mechanism of action of Pramipexole as a treatment for Parkinson's disease is unknown, although it is believed to be related to its ability to stimulate dopamine receptors in the striatum. This conclusion is supported by electrophysiologic studies in animals that have demonstrated that Pramipexole influences striatal neuronal firing rates via activation of dopamine receptors in the striatum and the substantia nigra, the site of neurons that send projections to the striatum.
Pramipexole is used for the treatment of signs and symptoms of idiopathic Parkinson's disease.
Status:
US Approved Rx
(2009)
Source:
ANDA076343
(2009)
Source URL:
First approved in 1996
Source:
NDA020505
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Topiramate is an anticonvulsant indicated in the treatment of epilepsy and migraine. Topiramate enhances GABA-activated chloride channels. In addition, topiramate inhibits excitatory neurotransmission, through actions on kainate and AMPA receptors. There is evidence that topiramate has a specific effect on GluR5 kainate receptors. It is also an inhibitor of carbonic anhydrase, particular subtypes II and IV, but this action is weak and unlikely to be related to its anticonvulsant actions, but may account for the bad taste and the development of renal stones seen during treatment. Its possible effect as a mood stabilizer seems to occur before anticonvulsant qualities at lower dosages. Topiramate inhibits maximal electroshock and pentylenetetrazol-induced seizures as well as partial and secundarily generalized tonic-clonic seizures in the kindling model, findings predective of a broad spectrum of antiseizure activities clinically. The precise mechanism of action of topiramate is not known. However, studies have shown that topiramate blocks the action potentials elicited repetitively by a sustained depolarization of the neurons in a time-dependent manner, suggesting a state-dependent sodium channel blocking action. Topiramate also augments the activity of the neurotransmitter gamma-aminobutyrate (GABA) at some subtypes of the GABAAreceptor (controls an integral chloride channel), indicating a possible mechanism through potentiation of the activity of GABA. Topiramate also demonstrates antagonism of the AMPA/kainate subtype of the glutamate excitatory amino acid receptor. It also inhibits carbonic anhydrase (particularly isozymes II and IV), but this action is weak and unlikely to be related to its anticonvulsant actions. Topiramate is used for the treatment and control of partial seizures and severe tonic-clonic (grand mal) seizures and also for the prevention of migraine headaches. In children it is also used for treatment of Lennox-Gastaut syndrome. Topiramate is sold under the brand name Topamax. A combination product containing phentermine and topiramate extended-release called QSYMIA® is indicated for the management of obesity.
Status:
US Approved Rx
(2008)
Source:
ANDA078748
(2008)
Source URL:
First approved in 1994
Source:
TRUSOPT by MSD SUB MERCK
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Dorzolamide is a sulfonamide and a highly specific carbonic anhydrase II (CA-II) inhibitor, which is the main CA isoenzyme involved in aqueous humor secretion. Dorzolamide is marketed under the trade name Trusopt, indicated in the treatment of elevated intraocular pressure in patients with ocular hypertension or open-angle glaucoma. Carbonic anhydrase (CA) is an enzyme found in many tissues of the body including the eye. It
catalyzes the reversible reaction involving the hydration of carbon dioxide and the dehydration of carbonic
acid. In humans, carbonic anhydrase exists as a number of isoenzymes, the most active being carbonic
anhydrase II (CA-II), found primarily in red blood cells (RBCs), but also in other tissues. Inhibition of
carbonic anhydrase in the ciliary processes of the eye decreases aqueous humor secretion, presumably
by slowing the formation of bicarbonate ions with subsequent reduction in sodium and fluid transport. The
result is a reduction in intraocular pressure (IOP).
TRUSOPT Ophthalmic Solution contains dorzolamide hydrochloride, an inhibitor of human carbonic
anhydrase II. Following topical ocular administration, TRUSOPT reduces elevated intraocular pressure.
Elevated intraocular pressure is a major risk factor in the pathogenesis of optic nerve damage and
glaucomatous visual field loss.
Status:
US Approved Rx
(1993)
Source:
ANDA040001
(1993)
Source URL:
First approved in 1959
Source:
NEPTAZANE by LEDERLE
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Methazolamide is topical carbonic anhydrase inhibitor. Methazolamide is indicated for the reduction of elevated intraocular pressure in patients with open-angle glaucoma or ocular hypertension who are insufficiently responsive to beta-blockers. Methazolamide is a sulfonamide derivative; however, it does not have any clinically significant antimicrobial properties. Although methazolamide achieves a high concentration in the cerebrospinal fluid, it is not-considered an effective anticonvulsant. Methazolamide has a weak and transient diuretic effect, therefore use results in an increase in urinary volume, with excretion of sodium, potassium and chloride. Methazolamide is a potent inhibitor of carbonic anhydrase. Inhibition of carbonic anhydrase in the ciliary processes of the eye decreases aqueous humor secretion, presumably by slowing the formation of bicarbonate ions with subsequent reduction in sodium and fluid transport. Methazolamide is used for treatment of chronic open-angle glaucoma and acute angle-closure glaucoma.
Status:
US Approved Rx
(2024)
Source:
ANDA218630
(2024)
Source URL:
First approved in 1958
Source:
DIUPRES-250 by MERCK
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Like other thiazides, chlorothiazide promotes water loss from the body (diuretics). It inhibits Na /Cl- reabsorption from the distal convoluted tubules in the kidneys. Thiazides also cause loss of potassium and an increase in serum uric acid. Thiazides are often used to treat hypertension, but their hypotensive effects are not necessarily due to their diuretic activity. Thiazides have been shown to prevent hypertension-related morbidity and mortality although the mechanism is not fully understood. Thiazides cause vasodilation by activating calcium-activated potassium channels (large conductance) in vascular smooth muscles and inhibiting various carbonic anhydrases in vascular tissue. Chlorothiazide affects the distal renal tubular mechanism of electrolyte reabsorption. At maximal therapeutic dosages, all thiazides are approximately equal in their diuretic efficacy. Chlorothiazide increases excretion of sodium and chloride in approximately equivalent amounts. Natriuresis may be accompanied by some loss of potassium and bicarbonate. After oral doses, 10-15 percent of the dose is excreted unchanged in the urine. Chlorothiazide crosses the placental but not the blood-brain barrier and is excreted in breast milk. As a diuretic, chlorothiazide inhibits active chloride reabsorption at the early distal tubule via the Na-Cl cotransporter, resulting in an increase in the excretion of sodium, chloride, and water. Thiazides like chlorothiazide also inhibit sodium ion transport across the renal tubular epithelium through binding to the thiazide sensitive sodium-chloride transporter. This results in an increase in potassium excretion via the sodium-potassium exchange mechanism. The antihypertensive mechanism of chlorothiazide is less well understood although it may be mediated through its action on carbonic anhydrases in the smooth muscle or through its action on the large-conductance calcium-activated potassium (KCa) channel, also found in the smooth muscle. It is marketed under the brand name Diuril.
Status:
US Approved Rx
(2008)
Source:
ANDA040904
(2008)
Source URL:
First approved in 1953
Source:
DIAMOX by TEVA BRANDED PHARM
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Acetazolamide, usually sold under the trade name Diamox in some countries. DIAMOX is used for adjunctive treatment of: chronic simple (open-angle) glaucoma, secondary glaucoma, and preoperatively in acute angle-closure glaucoma where delay of surgery is desired in order to lower intraocular pressure. DIAMOX is also indicated for the prevention or amelioration of symptoms associated with acute mountain sickness despite gradual ascent. DIAMOX is an enzyme inhibitor that acts specifically on carbonic anhydrase, the enzyme that catalyzes the reversible reaction involving the hydration of carbon dioxide and the dehydration of carbonic acid. In the eye, this inhibitory action of acetazolamide decreases the secretion of aqueous humor and results in a drop in intraocular pressure, a reaction considered desirable in cases of glaucoma and even in certain non-glaucomatous conditions. Evidence seems to indicate that DIAMOX has utility as an adjuvant in treatment of certain dysfunctions of the central nervous system (e.g., epilepsy). The diuretic effect of DIAMOX is due to its action in the kidney on the reversible reaction involving hydration of carbon dioxide and dehydration of carbonic acid. The result is renal loss of HCO3 ion, which carries out sodium, water, and potassium. It is on the World Health Organization's List of Essential Medicines, a list of the most important medications needed in a basic health system.
Status:
US Approved Rx
(1969)
Source:
NDA016763
(1969)
Source URL:
First approved in 1948
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Mafenide is a sulfonamide-type medication used as an antibiotic. It is indicated for use as an adjunctive topical antimicrobial agent to control bacterial infection when used under moist dressings over meshed autografts on excised burn wounds. Mafenide is not antagonized by pABA, serum, pus or tissue exudates, and there is no correlation between bacterial sensitivities to mafenide and to the sulfonamides. A single case of bone marrow depression and a single case of an acute attack of porphyria have been reported following therapy with mafenide acetate. Fatal hemolytic anemia with disseminated intravascular coagulation, presumably related to a glucose-6-phosphate dehydrogenase deficiency, has been reported following therapy with mafenide acetate. Other adverse reactions are: pain or burning sensation, rash and pruritis, erythema, skin maceration from prolonged wet dressings, facial edema, swelling, hives, blisters, eosinophilia.