{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Status:
US Approved Rx
(2021)
Source:
ANDA211304
(2021)
Source URL:
First approved in 1954
Source:
ARAMINE by MERCK
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Metaraminol is a potent sympathomimetic amine that increases both systolic and diastolic blood pressure, is an adrenergic receptor alpha-1 agonist.. Metaraminol is indicated for prevention and treatment of the acute hypotensive state occurring with spinal anesthesia. It is also indicated as adjunctive treatment of hypotension due to hemorrhage, reactions to medications, surgical complications, and shock associated with brain damage due to trauma or tumor. Metaraminol is also used in the treatment of priapism, in spite of this application was not approved, it appears to be effective.
Status:
US Approved Rx
(2017)
Source:
ANDA207686
(2017)
Source URL:
First approved in 1952
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Phentolamine (trade name Regitine) is a reversible nonselective α-adrenergic antagonist used for the control of hypertensive emergencies, most notably due to pheochromocytoma. Phentolamine produces its therapeutic actions by competitively blocking alpha-adrenergic receptors (primarily excitatory responses of smooth muscle and exocrine glands), leading to a muscle relaxation and a widening of the blood vessels. This widening of the blood vessels results in a lowering of blood pressure. The action of phentolamine on the alpha-adrenergic receptors is relatively transient and the blocking effect is incomplete. The drug is more effective in antagonizing responses to circulating epinephrine and/or norepinephrine than in antagonizing responses to mediator released at the adrenergic nerve ending. Phentolamine also stimulates β-adrenergic receptors and produces a positive inotropic and chronotropic effect on the heart and increases cardiac output. Phentolamine is indicated for the prevention or control of hypertensive episodes that may occur in a patient with pheochromocytoma as a result of stress or manipulation during preoperative preparation and surgical excision. Phentolamine is indicated for the prevention or treatment of dermal necrosis and sloughing following intravenous administration or extravasation of norepinephrine. Phentolamine is also indicated for the diagnosis of pheochromocytoma by the Phentolamine blocking test. Acute and prolonged hypotensive episodes, tachycardia, and cardiac arrhythmias have been reported. In addition, weakness, dizziness, flushing, orthostatic hypotension, nasal stuffiness, nausea, vomiting, and diarrhea may occur.
Status:
US Approved Rx
(1983)
Source:
ANDA086557
(1983)
Source URL:
First approved in 1948
Source:
CAFERGOT by NOVARTIS
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
The isolation and naming of ergotamine by Stoll occurred in 1925 but the complete elucidation of structure was not achieved until 1951, with synthesis following some 10 years later. Current sources of ergotamine include the isolation from field ergot and fermentation broth, as well as synthesis via coupling of (+)-lysergic acid with the appropriate synthetic peptidic moiety. Ergotamine was introduced into world commerce in 1921, and is currently marketed as its water soluble tartrate salt.
Ergotamine is a partial agonist at various tryptaminergic receptors (including the serotonin receptor [5-HT2]) and at various α-adrenergic receptors in blood vessels and various smooth muscles. It is likely that the major activity of ergotamine and related alkaloids is one of agonism at the 5-HT1B/1D receptors, just as with the “triptan” antimigraine compounds. FDA-labeled indications for ergotamine tartrate are in the abortion or prevention of vascular headaches, such as migraine, migraine variant, cluster headache, and histaminic cephalalgia.
Status:
US Approved OTC
Source:
21 CFR 341.20(b)(3) cough/cold:nasal decongestant ephedrine hydrochloride
Source URL:
First marketed in 1928
Source:
Ephetonine by Merck
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Ephedrine (l-form) is an alkaloid, which was initially purified from Ephedra plant. The extract form Ephedra has been used in China for medicinal purposes for several thousand years. Ephedrine acts as an agonist at alpha- and beta-adrenergic receptors and indirectly causes the release of norepinephrine from sympathetic neurons. The drug crosses the blood brain barrier and stimulates the central nervous system. Ephedrine products are now banned in many countries, as they are a major source for the production of the addictive compound methamphetamine. FDA has approved ephedrine only for the treatment of clinically important hypotension occurring in the setting of anesthesia.
Status:
Investigational
Source:
INN:lerimazoline [INN]
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Lerimazoline is a sympathomimetic drug that belongs to the imidazoline class of compounds, and is used as a nasal decongestant. Lerimazoline displayed high affinity for the 5-HT1A receptor and for the 5-HT1D receptor. Binding affinity estimates for α1-adrenoceptor, 5-HT2A, and D2 receptors were more than ten times lower. The mechanism of vasoconstrictor action of lerimazoline encompasses both, the activation of 5-HT2A, and to a lesser degree α1 -adrenergic receptors. These results also suggest that lerimazoline is an “atypical” decongestant. It inhibits secretion of nasal mucus. Lerimazoline causes hypertension.
Status:
Investigational
Source:
NCT01929044: Phase 3 Interventional Completed Intestinal Diseases
(2013)
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Anisodamine is a naturally occurring atropine derivative that has been isolated, synthesized and characterized by scientists in the People's Republic of China. Anisodamine is a non-specific cholinergic antagonist. Anisodamine has been shown to interact with and disrupt liposome structure which may reflect its effects on cellular membranes. Experimental evidence implicates anisodamine as an anti-oxidant that may protect against free radical-induced cellular damage. Its cardiovascular properties include depression of cardiac conduction and the ability to protect against arrhythmia induced by various agents. Anisodamine is a relatively weak alpha(1) adrenergic antagonist which may explain its vasodilating activity. Its anti-thrombotic activity may be a result of inhibition of thromboxane synthesis. Numerous therapeutic uses of anisodamine have been proposed including treatment of septic shock, various circulatory disorders, organophosphorus (OP) poisoning, migraine, gastric ulcers, gastrointestinal colic, acute glomerular nephritis, eclampsia, respiratory diseases, rheumatoid arthritis, obstructive jaundice, opiate addiction, snake bite and radiation damage protection. The primary therapeutic use of anisodamine has been for the treatment of septic shock. Several mechanisms have been proposed to explain its beneficial effect though most mechanisms are based upon the assumption that anisodamine ultimately acts by an improvement of blood flow in the microcirculation. Preliminary studies suggest another important therapeutic use of anisodamine is for the treatment of OP poisoning. Anisodamine has been employed
therapeutically since 1965 in the People’s Republic of China primarily to improve blood flow in circulatory disorders such as septic shock, disseminated intravascular coagulation (DIC) and as an antidote to organophosphate poisoning.
Status:
Investigational
Source:
INN:mazapertine [INN]
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Mazapertine (RWJ-37796) is an arylpiperazine antipsychotic with high affinity to dopamine D2 and D3, serotonin 5-HT1A and alpha 1A-adrenergic receptors. It was being studied in the treatment of schizophrenia.
Status:
Investigational
Source:
NCT04711915: Phase 1 Interventional Active, not recruiting Major Depressive Disorder
(2021)
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Class (Stereo):
CHEMICAL (ACHIRAL)
Nemazoline (A-57219) is a nasal decongestant. It has alpha 1-agonist/alpha 2-antagonist activity and was more effective and long-acting than oxymetazoline on canine nasal mucosa, in-vitro and in-vivo. Upon intranasal administration to dogs, the compound was devoid of systemic effects up to a concentration 1000 times that needed for local decongestant effect (1.65 micrograms, atomized from a 1 microgram mL-1 solution) suggesting limited mucosal absorption. After nasal administration to rats for 15 days at a concentration 1000 times greater than that required for nasal decongestion, no mucosal tissue toxicity or systemic effects were seen.
Status:
Investigational
Class (Stereo):
CHEMICAL (ACHIRAL)
Napamezole [WIN 51181] is a potent alpha-2 adrenergic receptor antagonist and a selective inhibitor of 5-hydroxytryptamine re-uptake in vitro. Napamezole was at the phase I stage of development with Sanofi Winthrop (formerly known as Sterling Drug before it was purchased by Sanofi) in the USA as a treatment for depression. The alpha adrenergic antagonist activity of napamezole was determined in vitro in rat brain receptor binding assay using [3H]clonidine and [3H]prazosin for alpha-2 and alpha-1 receptors, respectively. The Ki values for napamezole were 28 nM (alpha-2) and 93 nM (alpha-1).