{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Showing 8291 - 8297 of 8297 results
Status:
US Approved Rx
(2023)
Source:
ANDA216517
(2023)
Source URL:
First approved in 1977
Class:
POLYMER
Tetraethylenepentamine (TEPA) is a low-molecular-weight linear polyamine exerting metal-chelating properties. TEPA is widely used in industrial applications. The principal hazards that arise in working with TEPA are those associated with similar organic amines; namely, a corrosive action on skin and eyes. TEPA biological activity was attributed to its effect on cellular Cu levels as (a) treatment with TEPA resulted in reduction of cellular Cu, and (b) excess of Cu reversed TEPA's activity and accelerated differentiation. TEPA was shown to attenuate the differentiation of ex vivo cultured hematopoietic cells resulting in preferential expansion of early progenitors. A phase I/II trial was performed to test the feasibility and safety of transplantation of CD133+ cord blood (CB) hematopoietic progenitors cultured in media containing stem cell factor, FLT-3 ligand, interleukin-6, thrombopoietin and TEPA. Transplanting a population of CD133+ CB cells which were expanded ex vivo for 21 days using SCF, FLT3, IL-6, TPO and the copper chelator TEPA (StemEx) was feasible. The expanded cells were well tolerated, with no infusion-related adverse events observed.
Status:
US Approved Rx
(2010)
Source:
NDA021879
(2010)
Source URL:
First marketed in 1921
Class:
POLYMER
Targets:
Quinidine is a pharmaceutical agent that acts as a class I antiarrhythmic agent (Ia) in the heart. It is a stereoisomer of quinine, originally derived from the bark of the cinchona tree. The drug causes increased action potential duration, as well as a prolonged QT interval. Like all other class I antiarrhythmic agents, quinidine primarily works by blocking the fast inward sodium current (INa). Quinidine's effect on INa is known as a 'use-dependent block'. This means at higher heart rates, the block increases, while at lower heart rates, the block decreases. The effect of blocking the fast inward sodium current causes the phase 0 depolarization of the cardiac action potential to decrease (decreased Vmax). Quinidine also blocks the slowly inactivating, tetrodotoxin-sensitive Na current, the slow inward calcium current (ICA), the rapid (IKr) and slow (IKs) components of the delayed potassium rectifier current, the inward potassium rectifier current (IKI), the ATP-sensitive potassium channel (IKATP) and Ito. Quinidine is also an inhibitor of the cytochrome P450 enzyme 2D6 and can lead to increased blood levels of lidocaine, beta blockers, opioids, and some antidepressants. Quinidine also inhibits the transport protein P-glycoprotein and so can cause some peripherally acting drugs such as loperamide to have central nervous system side effects, such as respiratory depression if the two drugs are coadministered. Quinidine can cause thrombocytopenia, granulomatous hepatitis, myasthenia gravis, and torsades de pointes, so is not used much today. Torsades can occur after the first dose. Quinidine-induced thrombocytopenia (low platelet count) is mediated by the immune system and may lead to thrombocytic purpura. A combination of dextromethorphan and quinidine has been shown to alleviate symptoms of easy laughing and crying (pseudobulbar affect) in patients with amyotrophic lateral sclerosis and multiple sclerosis. This drug is marketed as Nuedexta in the United States. Intravenous quinidine is also indicated for the treatment of Plasmodium falciparum malaria. However, quinidine is not considered the first-line therapy for P. falciparum. The recommended treatments for P. falciparum malaria, according to the Toronto Notes 2008, are a combination of either quinine and doxycycline or atovaquone and proguanil (Malarone). The drug is also effective for the treatment of atrial fibrillation in horses.
Status:
US Approved Rx
(2010)
Source:
NDA021879
(2010)
Source URL:
First marketed in 1921
Class:
POLYMER
Targets:
Quinidine is a pharmaceutical agent that acts as a class I antiarrhythmic agent (Ia) in the heart. It is a stereoisomer of quinine, originally derived from the bark of the cinchona tree. The drug causes increased action potential duration, as well as a prolonged QT interval. Like all other class I antiarrhythmic agents, quinidine primarily works by blocking the fast inward sodium current (INa). Quinidine's effect on INa is known as a 'use-dependent block'. This means at higher heart rates, the block increases, while at lower heart rates, the block decreases. The effect of blocking the fast inward sodium current causes the phase 0 depolarization of the cardiac action potential to decrease (decreased Vmax). Quinidine also blocks the slowly inactivating, tetrodotoxin-sensitive Na current, the slow inward calcium current (ICA), the rapid (IKr) and slow (IKs) components of the delayed potassium rectifier current, the inward potassium rectifier current (IKI), the ATP-sensitive potassium channel (IKATP) and Ito. Quinidine is also an inhibitor of the cytochrome P450 enzyme 2D6 and can lead to increased blood levels of lidocaine, beta blockers, opioids, and some antidepressants. Quinidine also inhibits the transport protein P-glycoprotein and so can cause some peripherally acting drugs such as loperamide to have central nervous system side effects, such as respiratory depression if the two drugs are coadministered. Quinidine can cause thrombocytopenia, granulomatous hepatitis, myasthenia gravis, and torsades de pointes, so is not used much today. Torsades can occur after the first dose. Quinidine-induced thrombocytopenia (low platelet count) is mediated by the immune system and may lead to thrombocytic purpura. A combination of dextromethorphan and quinidine has been shown to alleviate symptoms of easy laughing and crying (pseudobulbar affect) in patients with amyotrophic lateral sclerosis and multiple sclerosis. This drug is marketed as Nuedexta in the United States. Intravenous quinidine is also indicated for the treatment of Plasmodium falciparum malaria. However, quinidine is not considered the first-line therapy for P. falciparum. The recommended treatments for P. falciparum malaria, according to the Toronto Notes 2008, are a combination of either quinine and doxycycline or atovaquone and proguanil (Malarone). The drug is also effective for the treatment of atrial fibrillation in horses.
Class:
POLYMER
Conditions:
Mureletecan is a water-soluble prodrug, consisting of camptothecin covalently linked to polymeric backbone methacryloylglycynamide, with potential antineoplastic activity. After entering tumor cells, the active moiety camptothecin is slowly released from mureletecan via hydrolysis of the ester linkage. Camptothecin, the active moiety, is an alkaloid isolatable from the Chinese tree Camptotheca acuminata. Camptothecin itself suffers from poor solubility, which is why it is often investigated with a solubilizing conjugate; such as in Mureletecan. Camptothecin binds to and stabilizes the topoisomerase I-DNA covalent complex producing potentially lethal double-stranded DNA breaks when encountered by DNA replication machinery. Camptothecin has also been shown to inhibit HIF1a. Camptothecin has been investigated with a number of solubilizing conjugates as a potential treatment in various forms of cancer.
Class:
POLYMER
Conditions:
Mureletecan is a water-soluble prodrug, consisting of camptothecin covalently linked to polymeric backbone methacryloylglycynamide, with potential antineoplastic activity. After entering tumor cells, the active moiety camptothecin is slowly released from mureletecan via hydrolysis of the ester linkage. Camptothecin, the active moiety, is an alkaloid isolatable from the Chinese tree Camptotheca acuminata. Camptothecin itself suffers from poor solubility, which is why it is often investigated with a solubilizing conjugate; such as in Mureletecan. Camptothecin binds to and stabilizes the topoisomerase I-DNA covalent complex producing potentially lethal double-stranded DNA breaks when encountered by DNA replication machinery. Camptothecin has also been shown to inhibit HIF1a. Camptothecin has been investigated with a number of solubilizing conjugates as a potential treatment in various forms of cancer.
Status:
Possibly Marketed Outside US
Source:
Cheon Shim Bo Hwa by Saimdang Cosmetics Co., Ltd
Source URL:
First approved in 1964
Source:
NADA012635
Source URL:
Class:
POLYMER
Conditions:
Tocophersolan (Vedrop, tocofersolan) or d-alpha-Tocopheryl Polyethylene Glycol 1000 Succinate (TPGS) is a watersoluble derivative of the natural active (d-alpha) isomer of vitamin E. The active constituent of the medicinal product is essentially vitamin E (alpha tocopherol). Chronic congenital or hereditary cholestasis is a clinical condition where vitamin E deficiency results from an impaired bile secretion. Decreased intestinal absorption observed in chronic congenital or hereditary cholestatic patients is due to decreased bile secretion and the resulting decrease in intestinal cellular absorption. As a result, fatsoluble vitamins (i.e. vit. E) are not absorbed properly and deficiency can occur. Tocophersolan (Vedrop) is used to treat or prevent vitamin E deficiency (low vitamin E levels). It is used in children up to the age of 18 years who have congenital or hereditary chronic cholestasis and who cannot absorb vitamin E from the gut. Tocophersolan (Tocofersolan) can be absorbed from the gut in children who have difficulty absorbing fats and vitamin E from the diet. This can increase vitamin E levels in the blood and help to prevent neurological deterioration (problems in the nervous system) due to vitamin E deficiency. No treatment-related findings were reported, as all clinical observations and findings at autopsy were similar in treatment and control groups. In many of the studies, the LD50 was not
determined as tocofersolan was well tolerated.
Status:
Possibly Marketed Outside US
First approved in 1956
Source:
M007
Source URL:
Class:
STRUCTURALLY DIVERSE
Targets:
Conditions:
Sennosides are hydroxyanthracene glycosides derived from Senna leaves. They have been used as natural, safe time-tested laxatives in traditional as well as modern systems of medicine. Sennosides (Senna) is a medication used to treat constipation and empty the large intestine before surgery. The medication is taken by mouth or via the rectum. It typically begins working in minutes when given by rectum and within twelve hours when given by mouth. It is a weaker laxative than bisacodyl or castor oil. Senna is an FDA-approved nonprescription drug for adults and children ages 2 years and older. It is also used for bowel preparation before colonoscopy and diagnostic imaging.