U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 441 - 450 of 8504 results

Amiodarone is an antiarrhythmic with mainly class III properties, but it possesses electrophysiologic characteristics of all four Vaughan Williams classes. Like class I drugs, amiodarone blocks sodium channels at rapid pacing frequencies, and like class II drugs, amiodarone exerts a noncompetitive antisympathetic action. In addition to blocking sodium channels, amiodarone blocks myocardial potassium channels, which contributes to slowing of conduction and prolongation of refractoriness. It is indicated for initiation of treatment and prophylaxis of frequently recurring ventricular fibrillation and hemodynamically unstable ventricular tachycardia in patients refractory to other therapy. The most common adverse reactions (1-2%) leading to discontinuation of intravenous amiodarone therapy are hypotension, asystole/cardiac arrest/pulseless electrical activity, VT, and cardiogenic shock. Other important adverse reactions are, torsade de pointes (TdP), congestive heart failure, and liver function test abnormalities. Fluoroquinolones, macrolide antibiotics, and azoles are known to cause QTc prolongation. There have been reports of QTc prolongation, with or without TdP, in patients taking amiodarone when fluoroquinolones, macrolide antibiotics, or azoles were administered concomitantly. Since amiodarone is a substrate for CYP3A and CYP2C8, drugs/substances that inhibit these isoenzymes may decrease the metabolism and increase serum concentration of amiodarone.
Sulconazole (trade name Exelderm) is an antifungal medication of the imidazole class. Sulconazole has a broad spectrum of antifungal activity in vitro and has been shown to be an effective topical antifungal agent for the management of superficial fungal infections of the skin, particularly dermatophytosis and tinea versicolor. Sulconazole inhibits the cytochrome P-450 isoenzyme, C-14-alpha-demethylase by binding to the heme iron of the enzyme. This results in a largely fungistatic effect. The selectivity of azole antifungal agents for pathogenic organisms compared with mammalian cells appears to depend on a preferred affinity of these drugs for fungal versus mammalian cytochrome P-450 sterol demethylases. Enzyme inhibition by sulconazole prevents the synthesis of ergosterol, a sterol found in fungal cell membranes but, in general, not in mammalian cell membranes. Additionally, lanosterol accumulates, which changes membrane permeability, cell volume, secondary metabolic effects, and causes defective cell division and growth inhibition. As sulconazole is primarily fungistatic, an intact immune system may be needed for infection resolution.In selected situations, sulconazole may have growth phase-dependent fungicidal activity against very susceptible organisms. The 1% concentration of sulconazole may greatly exceed the minimum inhibitory concentration and exert a direct physiochemical effect on the fungal cell membrane. The fungicidal effect may be due to hydrophobic interactions between sulconazole and unsaturated fatty acids in the membrane. Mammalian cells generally have little or no unsaturated fatty acids. Sulconazole may also prevent DNA and RNA synthesis and increase their degradation.Sulconazole has activity against many dermatophytes and yeast. One measure of the drug's antifungal activity is the relative inhibition factor (RIF). The RIF approaches 0% for a drug to which a fungus is highly sensitive and 100% for a drug that is non-inhibitory. The RIF values of sulconazole for Candida species, Aspergillus species, and dermatophytes are broadly similar to those of clotrimazole, econazole, ketoconazole, miconazole, and tioconazole. The mean RIF values were 69% (30—98%) for Candida species, 71% (61—82%) for Aspergillus species, and 12% (5—18%) for dermatophytes. Sulconazole is available as a cream or solution to treat skin infections such as athlete's foot, ringworm, jock itch, and sun fungus.
Status:
First approved in 1985

Class (Stereo):
CHEMICAL (RACEMIC)



Butoconazole, trade names Gynazole-1, an imidazole antifungal used in gynecology for the local treatment of vulvovaginal candidiasis (infections caused by Candida). The exact mechanism of the antifungal action of butoconazole nitrate is unknown; however, it is presumed to function as other imidazole derivatives via inhibition of steroid synthesis. Imidazoles generally inhibit the conversion of lanosterol to ergosterol, resulting in a change in fungal cell membrane lipid composition. This structural change alters cell permeability and, ultimately, results in the osmotic disruption or growth inhibition of the fungal cell.
Bupropion, an antidepressant of the aminoketone class and a non-nicotine aid to smoking cessation, is chemically unrelated to tricyclic, tetracyclic, selective serotonin re-uptake inhibitor, or other known antidepressant agents. Compared to classical tricyclic antidepressants, Bupropion is a relatively weak inhibitor of the neuronal uptake of norepinephrine, serotonin, and dopamine. In addition, Bupropion does not inhibit monoamine oxidase. Bupropion produces dose-related central nervous system (CNS) stimulant effects in animals, as evidenced by increased locomotor activity, increased rates of responding in various schedule-controlled operant behavior tasks, and, at high doses, induction of mild stereotyped behavior. Bupropion is marketed as Wellbutrin, Zyban, and generics. Bupropion is indicated for the treatment of major depressive disorder (MDD). WELLBUTRIN, WELLBUTRIN SR, and WELLBUTRIN XL are not approved for smoking cessation treatment, but bupropion under the name ZYBAN is approved for this use.
Ceftazidime is a semisynthetic, broad-spectrum, beta-lactam antibiotic, used especially for Pseudomonas and other gram-negative infections in debilitated patients. Ceftazidime is used to treat lower respiratory tract, skin, urinary tract, blood-stream, joint, and abdominal infections, and meningitis. The drug is given intravenously (IV) or intramuscularly (IM) every 8–12 hours (two or three times a day), with dose and frequency varying by the type of infection, severity, and/or renal function of the patient. Injectable formulations of ceftazidime are currently nebulized "off-label" to manage Cystic Fibrosis, non-Cystic Fibrosis bronchiectasis, drug-resistant nontuberculous mycobacterial infections, ventilator-associated pneumonia, and post-transplant airway infections. Ceftazidime is generally well-tolerated. When side effects do occur, they are most commonly local effects from the intravenous line site, allergic reactions, and gastrointestinal symptoms. According to one manufacturer, in clinical trials, allergic reactions including itching, rash, and fever, happened in fewer than 2% of patients. Rare but more serious allergic reactions, such as toxic epidermal necrolysis, Stevens-Johnson syndrome, and erythema multiforme, have been reported with this class of antibiotics, including ceftazidime. Gastrointestinal symptoms, including diarrhea, nausea, vomiting, and abdominal pain, were reported in fewer than 2% of patients.
Enalapril (marketed as Vasotec in the US, Enaladex and Renitec in some other countries) is an angiotensin-converting-enzyme (ACE) inhibitor used in the treatment of hypertension, diabetic nephropathy, and some types of chronic heart failure. Enalapril, after hydrolysis to enalaprilat, inhibits angiotensin-converting enzyme (ACE) in human subjects and animals. ACE is a peptidyl dipeptidase that catalyzes the conversion of angiotensin I to the vasoconstrictor substance, angiotensin II. Angiotensin II also stimulates aldosterone secretion by the adrenal cortex. The beneficial effects of enalapril in hypertension and heart failure appear to result primarily from suppression of the renin-angiotensin-aldosterone system. Inhibition of ACE results in decreased plasma angiotensin II, which leads to decreased vasopressor activity and to decrease aldosterone secretion.
Imipenem is a beta-lactam antibiotic belongings to the subgroup of carbapenems. Imipenem has a broad spectrum of activity against aerobic and anaerobic Gram positive as well as Gram negative bacteria. It is particularly important for its activity against Pseudomonas aeruginosa and the Enterococcus species. Imipenem is rapidly degraded by the renal enzyme dehydropeptidase when administered alone, and is always co-administered with cilastatin to prevent this inactivation. The bactericidal activity of imipenem results from the inhibition of cell wall synthesis. Its greatest affinity is for penicillin binding proteins (PBPs) 1A, 1B, 2, 4, 5 and 6 of Escherichia coli, and 1A, 1B, 2, 4 and 5 of Pseudomonas aeruginosa. The lethal effect is related to binding to PBP 2 and PBP 1B. Imipenem is marketed under the brand name Primaxin. PRIMAXIN I.M. (Imipenem and Cilastatin for Injectable Suspension) is a formulation of imipenem (a thienamycin antibiotic) and cilastatin sodium (the inhibitor of the renal dipeptidase, dehydropeptidase I). PRIMAXIN I.M. is a potent broad spectrum antibacterial agent for intramuscular administration.
Ribavirin is a synthetic nucleoside analogue, which was first discovered and developed in 1970 by researchers from the International Chemical & Nuclear Corporation (ICN), today known as Valeant Pharmaceuticals. Ribavirin was initially approved for use in humans to treat pediatric respiratory syncytial virus infections (RSV). In cell cultures the inhibitory activity of ribavirin for RSV is selective. The mechanism of action is unknown. Reversal of the in vitro antiviral activity by guanosine or xanthosine suggests ribavirin may act as an analogue of these cellular metabolites. There were no other significant advancements in the treatment of hepatitis C until 1998, when the combination of ribavirin and interferon-alpha gained approval. Clinically, ribavirin showed a small, additive antiviral effect in combination with interferon, but its main effect was dose-dependent prevention of virological relapse. The mechanism by which the combination of ribavirin and an interferon product exerts its effects against the hepatitis C virus has not been fully established. However, it could be thorough the inhibition of inosine monophosphate dehydrogenase (IMPDH), which is the key step in de novo guanine synthesis, a requirement for viral replication.
Auranofin (brand name Ridaura) is an organogold compound classified by the World Health Organization as an antirheumatic agent. Ridaura is indicated in the management of adults with active classical or definite rheumatoid arthritis (ARA criteria) who have had an insufficient therapeutic response to, or are intolerant of, an adequate trial of full doses of one or more nonsteroidal anti-inflammatory drugs. The mechanism of action of is not understood. In patients with adult rheumatoid arthritis, it may modify disease activity as manifested by synovitis and associated symptoms, and reflected by laboratory parameters such as ESR. There is no substantial evidence, however, that gold-containing compounds induce remission of rheumatoid arthritis. It may act as an inhibitor of kappab kinase and thioredoxin reductase, which would lead to a decreased immune response and decreased free radical production, respectively. In patients with inflammatory arthritis, such as adult and juvenile rheumatoid arthritis, gold salts can decrease the inflammation of the joint lining. This effect can prevent destruction of bone and cartilage. Ridaura should be added to a comprehensive baseline program, including non-drug therapies. Unlike anti-inflammatory drugs, RIDAURA does not produce an immediate response. Therapeutic effects may be seen after three to four months of treatment, although improvement has not been seen in some patients before six months.
Cefotetan is a semisynthetic cephamycin antibiotic that is administered intravenously or intramuscularly. The drug is highly resistant to a broad spectrum of beta-lactamases and is active against a wide range of both aerobic and anaerobic gram-positive and gram-negative microorganisms. It is FDA approved for the treatment of urinary tract infection, lower respiratory tract infection, skin and skin structure infections, gynecologic infection, intra-abdominal infection, and bone and joint infection; and for prophylaxis of postoperative infection. The bactericidal action of cefotetan results from inhibition of cell wall synthesis. The methoxy group in the 7-alpha position provides cefotetan with a high degree of stability in the presence of beta-lactamases including both penicillinases and cephalosporinase of gram-negative bacteria. Common adverse reactions include diarrhea and nausea. As with other cephalosporins, high concentrations of cefotetan may interfere with measurement of serum and urine creatinine levels.