{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Status:
US Approved Rx
(2025)
Source:
NDA214759
(2025)
Source URL:
First approved in 2025
Source:
NDA214759
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Treosulfan (l-threitol-1,4-bis-methanesulfonate; dihydroxybusulfan) is a prodrug of a bifunctional alkylating cytotoxic agent that is approved for the treatment of ovarian carcinomas in a number of European countries. The antitumor activity of treosulfan has been shown in a variety of solid tumors. It is used for the treatment of all types of ovarian cancer, either supplementary to surgery or palliatively. Treosulfan is a prodrug that is converted nonenzymatically first to a mono-epoxide – (2S,3S)- 1,2-epoxy-3,4-butanediol-4-methanesulfonate – and then to a diepoxide – l-diepoxybutane, which is also a metabolite of butadiene – under physiological conditions. Such conversions are assumed to account for the alkylating and therapeutic activities of treosulfan.
Status:
US Approved Rx
(2024)
Source:
NDA214927
(2024)
Source URL:
First approved in 2024
Source:
NDA214927
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Arimoclomol citrate is an experimental drug developed by a biopharmaceutical company CytRx Corporation. In 2011 the worldwide rights to arimoclomol were bought by Danish biotech company Orphazyme ApS. The European Medicines Agency (EMA) and U.S. Food & Drug Administration (FDA) granted orphan drug designation to arimoclomol as a potential treatment for Niemann-Pick type C in 2014 and 2015 respectively. Arimoclomol is believed to function by stimulating a normal cellular protein repair pathway through the activation of molecular chaperones. Since damaged proteins, called aggregates, are thought to play a role in many diseases, CytRx believes that arimoclomol could treat a broad range of diseases.
Status:
US Approved Rx
(2023)
Source:
NDA214520
(2023)
Source URL:
First approved in 2023
Source:
NDA214520
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Taurolidine [bis(1,1-dioxoperhydro-1,2,4-thiadiazinyl-4)-methane (TRD)], a product derived from the aminosulfoacid taurin, was first described as an anti-bacterial substance. Taurolidine is a small dimeric molecule with
molecular weight 284. It comprises the semiconditional
amino acid taurine. Taurolidine was originally
designed as a broad-spectrum antibiotic. Taurolidine has a broad antimicrobial spectrum of activity that is effective against aerobes and anaerobes, Gram-negative and Gram-posi-tive bacteria as well as yeasts and moulds in vitro. Taurolidine is also effective against methicillin-resistant and vancomycin-resistant bacteria (MRSA, VISA and VRE). It was mainly used in the treatment of patients with peritonis as well as antiendoxic agent in patients with systematic inflammatory response syndrome. It has been shown to be an effective bactericidal agent against both aerobic and
anaerobic bacteria. It is currently licensed for intraperitoneal use in several European countries for the treatment
of peritonitis. The compound appears to be nontoxic and
has an excellent safety record since its initial introduction
over 30 years ago. Taurolidine also possesses antiadherence properties and has been shown in vivo to reduce
the extent and severity of postoperative peritoneal adhesions. It also possesses a strong anti-inflammatory action.
This action appears, at least in part, to arise through its
ability to inactivate endotoxin. Inflammation-induced
tumor development is well described in the literature. Taurolidine’s anti-inflammatory and antiadherence properties prompted an investigation to examine whether it has
a role in antitumor therapy. Taurolidine induces cancer cell death through a variety
of mechanisms. It appears to act through enhancing
apoptosis, inhibiting angiogenesis and tumor adherence,
downregulating proinflammatory cytokine and endotoxin
levels, and stimulating the immune system in response to
surgically induced trauma. Taurolidine is currently in preclinical development for neuroblastoma. In February 23, 2018 the U.S. Food and Drug Administration (FDA) granted orphan drug designation to taurolidine for the treatment of neuroblastoma. Taurolidine is a key component in the Neutrolin®, a novel anti-infective solution for the reduction and prevention of catheter-related infections and thrombosis in patients requiring central venous cathers in end stage renal disease. Neutrolin contains a mix of Taurolidine, Citrate and Heparin. Neutrolin is designed to:
1) Aid in the prevention of Catheter-Related Bloodstream Infections (CRBIs) and
2) Prevent catheter dysfunction (due to blood clotting).
Status:
US Approved Rx
(2023)
Source:
NDA216718
(2023)
Source URL:
First approved in 2023
Source:
NDA216718
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Omaveloxolone (RTA-408) is a synthetic triterpenoid exerting antioxidant inflammation modulator properties. It activates the transcription factor Nrf2 and inhibits NF-κB signaling. Omaveloxolone demonstrated antioxidant, anti-inflammatory, and anticancer activities. Reata Pharmaceuticals is developing omaveloxolone for the treatment of cancers, Friedreich's ataxia and mitochondrial disorders.
Status:
US Approved Rx
(2022)
Source:
NDA216196
(2022)
Source URL:
First approved in 2022
Source:
NDA216196
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Mitapivat (AG-348; PKM2 activator 1020) is a novel, first-in-class oral small molecule allosteric activator of the pyruvate kinase enzyme. Mitapivat has been shown to significantly upregulate both wild-type and numerous mutant forms of erythrocyte pyruvate kinase (PKR), increasing adenosine triphosphate (ATP) production and reducing levels of 2,3-diphosphoglycerate. Given this mechanism, mitapivat has been evaluated in clinical trials in a wide range of hereditary hemolytic anemias, including pyruvate kinase deficiency (PKD), sickle cell disease, and the thalassemias. Mitapivat was approved for the treatment of hemolytic anemia in adults with pyruvate kinase (PK) deficiency in the United States in February 2022, and in the European Union in November 2022.
Status:
US Approved Rx
(2021)
Source:
NDA214377
(2021)
Source URL:
First approved in 2021
Source:
NDA214377
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Vericiguat, discovered at Bayer, is the first soluble guanylate cyclase (sGC) stimulator. Vericiguat is currently being studied in a Phase III clinical program for the treatment of heart failure with reduced ejection fraction (HFrEF).
Status:
US Approved Rx
(2020)
Source:
NDA211617
(2020)
Source URL:
First approved in 2020
Source:
NDA211617
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Bempedoic acid (also known as ETC-1002) is a novel investigational drug being developed for the treatment of dyslipidemia, hypercholesterolemia and other cardio-metabolic risk factors. The hypolipidemic, anti-atherosclerotic, anti-obesity, and glucose-lowering properties of ETC-1002, characterized in preclinical disease models, are believed to be due to dual inhibition of sterol and fatty acid synthesis and enhanced mitochondrial long-chain fatty acid β-oxidation. Investigations into the mechanism of action revealed that bempedoic acid-free acid activates AMP-activated protein kinase in a Ca(2+)/calmodulin-dependent kinase β-independent and liver kinase β-1-dependent manner, without detectable changes in adenylate energy charge. In the liver, bempedoic acid is also converted to a coenzyme A (CoA) derivative (ETC-1002-CoA )which directly inhibits ATP citrate lyase (ACL), a key enzyme that supplies a substrate for cholesterol and fatty acid synthesis in the liver. Inhibition of ACL by ETC-1002-CoA results in reduced cholesterol synthesis and upregulation of LDL receptor activity in the liver. This promotes the removal of LDL-C from the blood.
Status:
US Approved Rx
(2015)
Source:
NDA206038
(2015)
Source URL:
First approved in 2015
Source:
NDA206038
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Lumacaftor (VX-809) is an investigational drug developed by the Massachusetts-based pharmaceutical company Vertex for the treatment of patients who suffer from cystic fibrosis (CF) and have the F508del mutation in the CF transmembrane conductance regulator (CFTR). Currently, lumacaftor is approved by the U.S. FDA as a combined oral treatment for CF in combination with Kalydeco (ivacaftor). Lumacaftor is commercialized by Vertex under the brand name Orkambi, and Kalydeco was approved in the United States in 2012. The lumacaftor/Kalydeco combo was approved by the FDA in July 2015 for patients ages 12 and older, while the use of lumacaftor alone is still being studied by Vertex. The mechanism of action of lumacaftor is based on the interference with the F508 CFTR. The chronic disease is caused by a mutation in the gene that controls the salt transportation in the cells, resulting in thick, sticky mucus in the respiratory, digestive, and reproductive systems. To address that genetic defect, lumacaftor helps correct the mutated genes with a novel therapeutic approach. Both lumicaftor and kalydeco work by correcting the misfolded CFTR protein, the root cause of the F508del mutation, which led to the approval of the combined treatment by the FDA. However, while kalydeco alone is also approved by the FDA, the use of lumacftor alone has not yet been approved.
Status:
US Approved Rx
(2020)
Source:
ANDA210500
(2020)
Source URL:
First approved in 2013
Source:
NDA204063
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Dimethyl fumarate (DMF) is the methyl ester of fumaric acid. DMF was initially recognized as a very effective hypoxic cell radiosensitizer. Later, DMF combined with three other fumaric acid esters (FAE) was licensed in Germany as oral therapy for psoriasis (trade name Fumaderm). Phase III clinical trials found that DMF (BG-12) successfully reduced relapse rate and increased time to progression of disability in multiple sclerosis (trade name Tecfidera). DMF is thought to have immunomodulatory properties without significant immunosuppression. The mechanism of action of dimethyl fumarate in multiple sclerosis is not well understood. It is thought to involve dimethyl fumarate degradation to its active metabolite monomethyl fumarate (MMF) then MMF up-regulates the Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) pathway that is activated in response to oxidative stress. Dimethyl fumarate is marketed under the brand name Tecfidera.
Status:
US Approved Rx
(2018)
Source:
NDA211358
(2018)
Source URL:
First approved in 2012
Source:
NDA203188
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Ivacaftor (trade names KALYDECO® (ivacaftor) and ORKAMBI® (lumacaftor/ivacaftor)) is a cystic fibrosis transmembrane conductance regulator potentiator indicated for the treatment of cystic fibrosis in patients age 6 years and older who have one of the following mutations in the CFTR gene: G551D, G1244E, G1349D, G178R, G551S, S1251N, S1255P, S549N, or S549R. One such defect G551D is characterized by a dysfunctional CFTR protein on the cell surface. Although the defective protein is trafficked to the correct area, the epithelial cell surface, while there it cannot transport chloride through the channel. Ivacaftor, a CFTR potentiator, improves the transport of chloride through the ion channel by binding to the channels directly to induce a non-conventional mode of gating which in turn increases the probability that the channel is open. Ivacaftor regulates fluid flow within cells and affects the components of sweat, digestive fluids, and mucus.