{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Status:
Possibly Marketed Outside US
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Temocapril is a prodrug-type angiotensin-I converting enzyme (ACE) inhibitor not approved for use in the United States but is approved in Japan and South Korea. Temocapril can also be used in hemodialysis patients without risk of serious accumulation.
Status:
Possibly Marketed Outside US
Source:
DILOXANIDE FUROATE by The Boots
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Diloxanide (used in the form of furoate) was developed for the treatment of intestinal amoebiasis. The effectiveness of the drug was proved in clinical trials, however, the mechanism of its action is unknown. The drug is not marketed in the United States, athough it is available in India.
Status:
US Approved Rx
(1981)
Source:
NDA050555
(1981)
Source URL:
First approved in 1975
Source:
NEBCIN by LILLY
Source URL:
Class:
MIXTURE
Targets:
Tobramycin, an aminoglycoside antibiotic obtained from cultures of Streptomyces tenebrarius, it is effective against gram-negative bacteria, especially the pseudomonas species. Tobramycin is used in combination with other antibiotics to treat urinary tract infections, gynecologic infections, peritonitis, endocarditis, pneumonia, bacteremia and sepsis, respiratory infections including those associated with cystic fibrosis, osteomyelitis, and diabetic foot and other soft-tissue infections. It acts primarily by disrupting protein synthesis, leading to altered cell membrane permeability, progressive disruption of the cell envelope, and eventual cell death. Tobramycin has in vitro activity against a wide range of gram-negative organisms including Pseudomonas aeruginosa. Tobramycin binds irreversibly to one of two aminoglycoside binding sites on the 30 S ribosomal subunit, inhibiting bacterial protein synthesis. Tobramycin may also destabilize bacterial memebrane by binding to 16 S 16 S r-RNA. An active transport mechanism for aminoglycoside uptake is necessary in the bacteria in order to attain a significant intracellular concentration of tobramycin. KITABIS PAK (co-packaging of tobramycin inhalation solution and PARI LC PLUS Reusable Nebulizer) is indicated for the management of cystic fibrosis in adults and pediatric patients 6 years of age and older with P. aeruginosa.
Status:
US Approved Rx
(2018)
Source:
NDA208742
(2018)
Source URL:
First approved in 1958
Source:
DECADRON by MERCK
Source URL:
Class:
MIXTURE
Conditions:
Dexamethasone is an anti-inflammatory agent that is FDA approved for the treatment of many conditions, including rheumatic problems, a number of skin diseases, severe allergies, asthma, chronic obstructive lung disease, croup, brain swelling and others. Dexamethasone is a glucocorticoid agonist. Unbound dexamethasone crosses cell membranes and binds with high affinity to specific cytoplasmic glucocorticoid receptors. Adverse reactions are: Glaucoma with optic nerve damage, visual acuity and field defects; cataract formation; secondary ocular infection following suppression of host response; and perforation of the globe may occur; muscle weakness; osteoporosis and others. Aminoglutethimide may diminish adrenal suppression by corticosteroids. Macrolide antibiotics have been reported to cause a significant decrease in corticosteroid clearance.
Status:
Investigational
Source:
NCT04009044: Phase 2 Interventional Recruiting Cancer Survivor
(2020)
Source URL:
Class:
MIXTURE
Conditions:
Hydroxytamoxifen (Afimoxifene) is an active metabolite of tamoxifen exerting estrogen receptor modulatory function. In addition, hydroxytamoxifen binds to regulates transcriptional activity of the estrogen-related receptor gamma. ASCEND Therapeutics, Inc. was developing TamoGel (4-hydroxytamoxifen gel) for a variety of estrogen-dependent conditions, including breast cancer, cyclic breast pain and gynecomastia.
Status:
US Previously Marketed
Source:
Strychnine U.S.P.
(1921)
Source URL:
First marketed in 1921
Class:
MIXTURE
Conditions:
Strychnine is an indole alkaloid obtained from the seeds of the Indian tree Strychnos nux-vomica. It gets its scientific name “strychnos” from Carl Linnaeus, who classified it back in 1753, but it was known to the population of India way before then. Nux vomica originates in India. Strychnine-containing baits are currently labelled for below-ground use and are intended for the control of pocket gophers. Their use as indoor pesticides has been eliminated since 1989. In the past, strychnine has been used as a pesticide to control rats, moles, gophers, and coyotes. Strychnine is highly toxic to most domestic animals. Strychnine is a competitive antagonist at glycine receptors and thus a convulsant. It has been used as an analeptic, in the treatment of nonketotic hyperglycinemia and sleep apnea.
Status:
US Approved Rx
(2022)
Source:
NDA022231
(2022)
Source URL:
First approved in 2022
Source:
NDA022231
Source URL:
Class:
PROTEIN
Terlipressin (Glypressin) is indicated for the treatment of bleeding oesophageal varices and in some countries for the treatment of hepatorenal syndrome type 1. It is a prodrug and is converted to the lysine vasopressin in the circulation after the N-triglycyl residue is cleaved by endothelial peptidases. This results in a ‘slow release’ of the vasoactive lysine vasopressin. Terlipressin exerts its action by activating V1a, V1b and V2 vasopressin receptors. On September 14, 2022, the FDA granted approval to terlipressin (Terlivaz) for the treatment of adults hospitalized with hepatorenal syndrome with rapid reduction in kidney function (HRS-1). Prior to the approval, no approved treatment for this condition existed in the United States.
Status:
US Approved Rx
(2022)
Source:
NDA022231
(2022)
Source URL:
First approved in 2022
Source:
NDA022231
Source URL:
Class:
PROTEIN
Terlipressin (Glypressin) is indicated for the treatment of bleeding oesophageal varices and in some countries for the treatment of hepatorenal syndrome type 1. It is a prodrug and is converted to the lysine vasopressin in the circulation after the N-triglycyl residue is cleaved by endothelial peptidases. This results in a ‘slow release’ of the vasoactive lysine vasopressin. Terlipressin exerts its action by activating V1a, V1b and V2 vasopressin receptors. On September 14, 2022, the FDA granted approval to terlipressin (Terlivaz) for the treatment of adults hospitalized with hepatorenal syndrome with rapid reduction in kidney function (HRS-1). Prior to the approval, no approved treatment for this condition existed in the United States.
Status:
US Approved Rx
(2005)
Source:
NDA021660
(2005)
Source URL:
First approved in 1992
Source:
TAXOL by HQ SPCLT PHARMA
Source URL:
Class:
POLYMER
Targets:
Paclitaxel is a mitotic inhibitor used in cancer chemotherapy. It was discovered in a US National Cancer Institute program at the Research Triangle Institute in 1967 when Monroe E. Wall and Mansukh C. Wani isolated it from the bark of the Pacific yew tree, Taxus brevifolia and named it taxol. Later it was discovered that endophytic fungi in the bark synthesize paclitaxel. When it was developed commercially by Bristol-Myers Squibb (BMS), the generic name was changed to paclitaxel and the BMS compound is sold under the trademark Taxol. In this formulation, paclitaxel is dissolved in Kolliphor EL and ethanol, as a delivery agent. Taxol is marketed for the treatment of Breast cancer; Gastric cancer; Kaposi's sarcoma; Non-small cell lung cancer; Ovarian cancer. A newer formulation, in which paclitaxel is bound to albumin, is sold under the trademark Abraxane. Paclitaxel is a taxoid antineoplastic agent indicated as first-line and subsequent therapy for the treatment of advanced carcinoma of the ovary, and other various cancers including breast cancer. Paclitaxel is a novel antimicrotubule agent that promotes the assembly of microtubules from tubulin dimers and stabilizes microtubules by preventing depolymerization. This stability results in the inhibition of the normal dynamic reorganization of the microtubule network that is essential for vital interphase and mitotic cellular functions. In addition, paclitaxel induces abnormal arrays or "bundles" of microtubules throughout the cell cycle and multiple asters of microtubules during mitosis. Used in the treatment of Kaposi's sarcoma and cancer of the lung, ovarian, and breast. Abraxane® is specfically indicated for the treatment of metastatic breast cancer and locally advanced or metastatic non-small cell lung cancer. Paclitaxel interferes with the normal function of microtubule growth. Whereas drugs like colchicine cause the depolymerization of microtubules in vivo, paclitaxel arrests their function by having the opposite effect; it hyper-stabilizes their structure. This destroys the cell's ability to use its cytoskeleton in a flexible manner. Specifically, paclitaxel binds to the β subunit of tubulin. Tubulin is the "building block" of mictotubules, and the binding of paclitaxel locks these building blocks in place. The resulting microtubule/paclitaxel complex does not have the ability to disassemble. This adversely affects cell function because the shortening and lengthening of microtubules (termed dynamic instability) is necessary for their function as a transportation highway for the cell. Chromosomes, for example, rely upon this property of microtubules during mitosis. Further research has indicated that paclitaxel induces programmed cell death (apoptosis) in cancer cells by binding to an apoptosis stopping protein called Bcl-2 (B-cell leukemia 2) and thus arresting its function.
Status:
US Approved Rx
(1982)
Source:
ANDA088072
(1982)
Source URL:
First marketed in 1921
Class:
POLYMER
Targets:
Quinidine is a pharmaceutical agent that acts as a class I antiarrhythmic agent (Ia) in the heart. It is a stereoisomer of quinine, originally derived from the bark of the cinchona tree. The drug causes increased action potential duration, as well as a prolonged QT interval. Like all other class I antiarrhythmic agents, quinidine primarily works by blocking the fast inward sodium current (INa). Quinidine's effect on INa is known as a 'use-dependent block'. This means at higher heart rates, the block increases, while at lower heart rates, the block decreases. The effect of blocking the fast inward sodium current causes the phase 0 depolarization of the cardiac action potential to decrease (decreased Vmax). Quinidine also blocks the slowly inactivating, tetrodotoxin-sensitive Na current, the slow inward calcium current (ICA), the rapid (IKr) and slow (IKs) components of the delayed potassium rectifier current, the inward potassium rectifier current (IKI), the ATP-sensitive potassium channel (IKATP) and Ito. Quinidine is also an inhibitor of the cytochrome P450 enzyme 2D6 and can lead to increased blood levels of lidocaine, beta blockers, opioids, and some antidepressants. Quinidine also inhibits the transport protein P-glycoprotein and so can cause some peripherally acting drugs such as loperamide to have central nervous system side effects, such as respiratory depression if the two drugs are coadministered. Quinidine can cause thrombocytopenia, granulomatous hepatitis, myasthenia gravis, and torsades de pointes, so is not used much today. Torsades can occur after the first dose. Quinidine-induced thrombocytopenia (low platelet count) is mediated by the immune system and may lead to thrombocytic purpura. A combination of dextromethorphan and quinidine has been shown to alleviate symptoms of easy laughing and crying (pseudobulbar affect) in patients with amyotrophic lateral sclerosis and multiple sclerosis. This drug is marketed as Nuedexta in the United States. Intravenous quinidine is also indicated for the treatment of Plasmodium falciparum malaria. However, quinidine is not considered the first-line therapy for P. falciparum. The recommended treatments for P. falciparum malaria, according to the Toronto Notes 2008, are a combination of either quinine and doxycycline or atovaquone and proguanil (Malarone). The drug is also effective for the treatment of atrial fibrillation in horses.