{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Status:
US Approved Rx
(1992)
Source:
ANDA073618
(1992)
Source URL:
First approved in 1975
Source:
NDA017555
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Carbidopa is a competitive inhibitor of aromatic L-amino acid decarboxylase that does not cross the blood-brain barrier, is routinely administered with levodopa (LD) for the treatment of the symptoms of idiopathic Parkinson’s disease (paralysis agitans), postencephalitic parkinsonism, and symptomatic parkinsonism, which may follow injury to the nervous system by carbon monoxide intoxication and/or manganese intoxication. Current evidence indicates that symptoms of Parkinson’s disease are related to depletion of dopamine in the corpus striatum. Administration of dopamine is ineffective in the treatment of Parkinson’s disease apparently because it does not cross the blood-brain barrier. However, levodopa, the metabolic precursor of dopamine, does cross the blood- brain barrier, and presumably is converted to dopamine in the brain. When levodopa is administered orally it is rapidly decarboxylated to dopamine in extracerebral tissues so that only a small portion of a given dose is transported unchanged to the central nervous system. For this reason, large doses of levodopa are required for adequate therapeutic effect and these may often be accompanied by nausea and other adverse reactions, some of which are attributable to dopamine formed in extracerebral tissues. Carbidopa inhibits decarboxylation of peripheral levodopa. Carbidopa has not been demonstrated to have any overt pharmacodynamic actions in the recommended doses.
Status:
US Approved Rx
(1975)
Source:
NDA017586
(1975)
Source URL:
First approved in 1975
Source:
NDA017586
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Gluconic acid is a natural compound
produced from glucose through a simple dehydrogenation reaction catalysed by glucose oxidase. Gluconic acid and its salts are
used in the formulation of food, pharmaceutical and hygienic products.
Status:
US Approved Rx
(1975)
Source:
NDA017586
(1975)
Source URL:
First approved in 1975
Source:
NDA017586
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Gluconic acid is a natural compound
produced from glucose through a simple dehydrogenation reaction catalysed by glucose oxidase. Gluconic acid and its salts are
used in the formulation of food, pharmaceutical and hygienic products.
Status:
US Approved Rx
(1998)
Source:
ANDA075259
(1998)
Source URL:
First approved in 1975
Source:
DTIC-DOME by BAYER HLTHCARE
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Dacarbazine (DTIC), also known as imidazole carboxamide, is an antineoplastic agent, which is used in the treatment of metastatic malignant melanoma. In addition, this drug also is indicated for Hodgkin’s disease as a second-line therapy when used in combination with other effective agents. Dacarbazine works by methylating guanine at the O-6 and N-7 positions. Guanine is one of the four nucleotides that makes up DNA. The alkylated DNA strands stick together such that cell division becomes impossible. This affects cancer cells more than healthy cells because cancer cells divide faster. Dacarbazine is bioactivated in liver by demethylation to "MTIC" and then to diazomethane, which is an alkylating agent. Symptoms of anorexia, nausea, and vomiting are the most frequently noted of all toxic reactions. Over 90% of patients are affected with the initial few doses.
Status:
US Approved Rx
(1975)
Source:
NDA017586
(1975)
Source URL:
First approved in 1975
Source:
NDA017586
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Gluconic acid is a natural compound
produced from glucose through a simple dehydrogenation reaction catalysed by glucose oxidase. Gluconic acid and its salts are
used in the formulation of food, pharmaceutical and hygienic products.
Status:
US Approved Rx
(1998)
Source:
ANDA075259
(1998)
Source URL:
First approved in 1975
Source:
DTIC-DOME by BAYER HLTHCARE
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Dacarbazine (DTIC), also known as imidazole carboxamide, is an antineoplastic agent, which is used in the treatment of metastatic malignant melanoma. In addition, this drug also is indicated for Hodgkin’s disease as a second-line therapy when used in combination with other effective agents. Dacarbazine works by methylating guanine at the O-6 and N-7 positions. Guanine is one of the four nucleotides that makes up DNA. The alkylated DNA strands stick together such that cell division becomes impossible. This affects cancer cells more than healthy cells because cancer cells divide faster. Dacarbazine is bioactivated in liver by demethylation to "MTIC" and then to diazomethane, which is an alkylating agent. Symptoms of anorexia, nausea, and vomiting are the most frequently noted of all toxic reactions. Over 90% of patients are affected with the initial few doses.
Status:
US Approved Rx
(1975)
Source:
NDA017586
(1975)
Source URL:
First approved in 1975
Source:
NDA017586
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Gluconic acid is a natural compound
produced from glucose through a simple dehydrogenation reaction catalysed by glucose oxidase. Gluconic acid and its salts are
used in the formulation of food, pharmaceutical and hygienic products.
Status:
US Approved Rx
(1988)
Source:
ANDA072204
(1988)
Source URL:
First approved in 1975
Source:
LOXITANE by TEVA BRANDED PHARM
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Loxapine is a dibenzoxazepine tricyclic antipsychotic agent, available for oral and inhalatory administration, classified as a typical antipsychotic. Loxapine acts as an antagonist at central serotonin and dopamine receptors. Adasuve (loxapine inhalation powder) is a prescription medicine that is used to treat acute agitation in adults with schizophrenia or bipolar I disorder.
Status:
US Approved Rx
(1988)
Source:
ANDA072204
(1988)
Source URL:
First approved in 1975
Source:
LOXITANE by TEVA BRANDED PHARM
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Loxapine is a dibenzoxazepine tricyclic antipsychotic agent, available for oral and inhalatory administration, classified as a typical antipsychotic. Loxapine acts as an antagonist at central serotonin and dopamine receptors. Adasuve (loxapine inhalation powder) is a prescription medicine that is used to treat acute agitation in adults with schizophrenia or bipolar I disorder.
Status:
US Approved Rx
(1992)
Source:
ANDA073618
(1992)
Source URL:
First approved in 1975
Source:
NDA017555
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Carbidopa is a competitive inhibitor of aromatic L-amino acid decarboxylase that does not cross the blood-brain barrier, is routinely administered with levodopa (LD) for the treatment of the symptoms of idiopathic Parkinson’s disease (paralysis agitans), postencephalitic parkinsonism, and symptomatic parkinsonism, which may follow injury to the nervous system by carbon monoxide intoxication and/or manganese intoxication. Current evidence indicates that symptoms of Parkinson’s disease are related to depletion of dopamine in the corpus striatum. Administration of dopamine is ineffective in the treatment of Parkinson’s disease apparently because it does not cross the blood-brain barrier. However, levodopa, the metabolic precursor of dopamine, does cross the blood- brain barrier, and presumably is converted to dopamine in the brain. When levodopa is administered orally it is rapidly decarboxylated to dopamine in extracerebral tissues so that only a small portion of a given dose is transported unchanged to the central nervous system. For this reason, large doses of levodopa are required for adequate therapeutic effect and these may often be accompanied by nausea and other adverse reactions, some of which are attributable to dopamine formed in extracerebral tissues. Carbidopa inhibits decarboxylation of peripheral levodopa. Carbidopa has not been demonstrated to have any overt pharmacodynamic actions in the recommended doses.