U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 191 - 200 of 911 results


Class (Stereo):
CHEMICAL (ABSOLUTE)



Carbidopa is a competitive inhibitor of aromatic L-amino acid decarboxylase that does not cross the blood-brain barrier, is routinely administered with levodopa (LD) for the treatment of the symptoms of idiopathic Parkinson’s disease (paralysis agitans), postencephalitic parkinsonism, and symptomatic parkinsonism, which may follow injury to the nervous system by carbon monoxide intoxication and/or manganese intoxication. Current evidence indicates that symptoms of Parkinson’s disease are related to depletion of dopamine in the corpus striatum. Administration of dopamine is ineffective in the treatment of Parkinson’s disease apparently because it does not cross the blood-brain barrier. However, levodopa, the metabolic precursor of dopamine, does cross the blood- brain barrier, and presumably is converted to dopamine in the brain. When levodopa is administered orally it is rapidly decarboxylated to dopamine in extracerebral tissues so that only a small portion of a given dose is transported unchanged to the central nervous system. For this reason, large doses of levodopa are required for adequate therapeutic effect and these may often be accompanied by nausea and other adverse reactions, some of which are attributable to dopamine formed in extracerebral tissues. Carbidopa inhibits decarboxylation of peripheral levodopa. Carbidopa has not been demonstrated to have any overt pharmacodynamic actions in the recommended doses.
Trimethoprim (TMP) is an antibiotic is used for the treatment of initial episodes of uncomplicated urinary tract infections due to susceptible strains of the following organisms: Escherichia coli, Proteus mirabilis, Klebsiella pneumoniae, Enterobacter species, and coagulase-negative Staphylococcus species, including S. saprophyticus. Cultures and susceptibility tests should be performed to determine the susceptibility of the bacteria to trimethoprim. Therapy may be initiated prior to obtaining the results of these tests. Trimethoprim is rapidly absorbed following oral administration. It exists in the blood as unbound, protein-bound, and metabolized forms. Ten to twenty percent of trimethoprim is metabolized, primarily in the liver; the remainder is excreted unchanged in the urine. The principal metabolites of trimethoprim are the 1- and 3-oxides and the 3'- and 4'-hydroxy derivatives. The free form is considered to be the therapeutically active form. Approximately 44% of trimethoprim is bound to plasma proteins. Trimethoprim blocks the production of tetrahydrofolic acid from dihydrofolic acid by binding to and reversibly inhibiting the required enzyme, dihydrofolate reductase. This binding is very much stronger for the bacterial enzyme than for the corresponding mammalian enzyme
Amoxicillin is one of the widely prescribed antibacterial agents, which was discovered by scientists at Beecham Research Laboratories in 1972. In the US GlaxoSmithKline markets it under the original brand name Amoxil. It is the first line treatment for middle ear infections. It is also used for strep throat, pneumonia, skin infections, and urinary tract infections it is taken by mouth. Amoxicillin inhibits the third and final stage of bacterial cell wall synthesis by preferentially binding to specific penicillin-binding proteins (PBPs) that are located inside the bacterial cell wall. This results in a formation of defective cell wall and a cell death. Common side effects include nausea and rash. It may also increase the risk of yeast infections and, when used in combination with clavulanic acid, diarrhea. It should not be used in those who are allergic to penicillin.
Status:
First approved in 1972
Source:
Hydromorphone Hydrochloride by Hikma Pharmaceuticals USA Inc.
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)


Conditions:

Hydromorphone (also known as dihydromorphinone and the brand name Dilaudid among others) is a more potent opioid analgesic than morphine and is used for moderate to severe pain. It can be administered by injection, by infusion, by mouth, and rectally. Oral bioavailability is low. The kidney excretes hydromorphone and its metabolites. Some metabolites may have greater analgesic activity than hydromorphone itself but are unlikely to contribute to the pharmacological activity of hydromorphone. With the exception of pruritus, sedation and nausea and vomiting, which may occur less after hydromorphone than after morphine, the side-effects of these drugs are similar. Hydromorphone interacts predominantly with the opioid mu-receptors. These mu-binding sites are discretely distributed in the human brain, with high densities in the posterior amygdala, hypothalamus, thalamus, nucleus caudatus, putamen, and certain cortical areas. It also binds with kappa and delta receptors which are thought to mediate spinal analgesia, miosis and sedation.
Rifampin is an antibiotic that inhibits DNA-dependent RNA polymerase activity in susceptible cells. Specifically, it interacts with bacterial RNA polymerase but does not inhibit the mammalian enzyme. It is bactericidal and has a very broad spectrum of activity against most gram-positive and gram-negative organisms (including Pseudomonas aeruginosa) and specifically Mycobacterium tuberculosis. It is FDA approved for the treatment of tuberculosis, meningococcal carrier state. Healthy subjects who received rifampin 600 mg once daily concomitantly with saquinavir 1000 mg/ritonavir 100 mg twice daily (ritonavir-boosted saquinavir) developed severe hepatocellular toxicity. Rifampin has been reported to substantially decrease the plasma concentrations of the following antiviral drugs: atazanavir, darunavir, fosamprenavir, saquinavir, and tipranavir. These antiviral drugs must not be co-administered with rifampin. Common adverse reactions include heartburn, epigastric distress, anorexia, nausea, vomiting, jaundice, flatulence, cramps.
Status:
First approved in 1971

Class (Stereo):
CHEMICAL (ABSOLUTE)



Megestrol acetate is a progestational hormone used most commonly as the acetate ester. As the acetate, it is more potent than progesterone both as a progestagen and as an ovulation inhibitor. It has also been used in the palliative treatment of breast cancer. MEGACE Oral Suspension is indicated for the treatment of anorexia, cachexia, or an unexplained, significant weight loss in patients with a diagnosis of acquired immunodeficiency syndrome (AIDS). The precise mechanism by which megestrol acetate produces effects in anorexia and cachexia is unknown at the present time. But its progestin antitumour activity may involve suppression of luteinizing hormone by inhibition of pituitary function. Studies also suggest that the megestrol's weight gain effect is related to its appetite-stimulant or metabolic effects rather than its glucocorticoid-like effects or the production of edema. It has also been suggested that megestrol may alter metabolic pathyways via interferences with the production or action of mediators such as cachectin, a hormone that inhibits adipocyte lipogenic enzymes. The major route of drug elimination in humans is urine. When radiolabeled megestrol acetate was administered to humans in doses of 4 to 90 mg, the urinary excretion within 10 days ranged from 56.5% to 78.4% (mean 66.4%) and fecal excretion ranged from 7.7% to 30.3% (mean 19.8%). The total recovered radioactivity varied between 83.1% and 94.7% (mean 86.2%). Megestrol acetate metabolites which were identified in urine constituted 5% to 8% of the dose administered. Respiratory excretion as labeled carbon dioxide and fat storage may have accounted for at least part of the radioactivity not found in urine and feces. Plasma steady-state pharmacokinetics of megestrol acetate were evaluated in 10 adult, cachectic male patients with acquired immunodeficiency syndrome (AIDS) and an involuntary weight loss greater than 10% of baseline. Patients received single oral doses of 800 mg/day of MEGACE Oral Suspension for 21 days. Plasma concentration data obtained on day 21 were evaluated for up to 48 hours past the last dose.

Class (Stereo):
CHEMICAL (ACHIRAL)


Conditions:

Fentanyl is a potent agonist of mu opioid receptor. It is used to relieve severe pain, such as after surgery or during cancer treatment, and breakthrough pain (flare-ups of intense pain despite round-the-clock narcotic treatment). Fentanyl is an extremely powerful analgesic, 50–100-times more potent than morphine. Fentanyl harbors massive risk for addiction and abuse regardless of its prescription form. Fentanyl abuse is especially dangerous to those without a tolerance to opioids. The substance’s already elevated risk of overdose is multiplied when someone without a tolerance abuses it.
Levonorgestrel (LNG) is a synthetic progestational hormone with actions similar to those of progesterone and about twice as potent as its racemic or (+-)-isomer (norgestrel). It is used for contraception, control of menstrual disorders, and treatment of endometriosis. It is usually supplied in a racemic mixture (Norgestrel, 6533-00-2). Only the levonorgestrel isomer is active. Within an Intrauterine device (IUD), sold as Mirena among others, it is effective for long term prevention of pregnancy. The local mechanism by which continuously released LNG enhances contraceptive effectiveness of Mirena has not been conclusively demonstrated. Studies of Mirena and similar LNG IUS prototypes have suggested several mechanisms that prevent pregnancy: thickening of cervical mucus preventing passage of sperm into the uterus, inhibition of sperm capacitation or survival, and alteration of the endometrium. Mirena has mainly local progestogenic effects in the uterine cavity. The high local levels of levonorgestrel lead to morphological changes including stromal pseudodecidualization, glandular atrophy, a leukocytic infiltration and a decrease in glandular and stromal mitoses. Ovulation is inhibited in some women using Mirena. In a 1-year study, approximately 45% of menstrual cycles were ovulatory, and in another study after 4 years, 75% of cycles were ovulatory. There has been much debate regarding levonorgestrel emergency contraception's (LNG-EC's) method of action since 1999 when the Food and Drug Administration first approved its use. Proponents of LNG-EC have argued that they have moral certitude that LNG-EC works via a non-abortifacient mechanism of action, and claim that all the major scientific and medical data consistently support this hypothesis. However, newer medical data serve to undermine the consistency of the non-abortifacient hypothesis and instead support the hypothesis that preovulatory administration of LNG-EC has significant potential to work via abortion. The implications of the newer data have important ramifications for medical personnel, patients, and both Catholic and non-Catholic emergency room protocols. In the future, technology such as the use of early pregnancy factor may have the potential to quantify how frequently preovulatory LNG-EC works via abortion. The latest scientific and medical evidence now demonstrates that levonorgestrel emergency contraception theoretically works via abortion quite often. The implications of the newer data have important ramifications for medical personnel, patients, and both Catholic and non-Catholic emergency room rape protocols.

Class (Stereo):
CHEMICAL (ACHIRAL)



Hydroxyurea is an oral antimetabolite; inhibits ribonucleotide reductase and DNA synthesis. It is used for resistant chronic myeloid leukemia, locally advanced squamous cell carcinomas of the head and neck (excluding lip) in combination with concurrent chemoradiation, and to reduce the frequency of painful crises and the need for blood transfusions in patients with sickle cell anemia with recurrent moderate to severe painful crises. Hydroxyurea, a myelosuppressive agent, is the only effective drug proven to reduce the frequency of painful episodes. It raises the level of HbF and the haemoglobin level. It usually decreases the rate of painful episodes by 50%. It was first tested in sickle cell disease in 1984. It also decreases the rate of ACS episodes and blood transfusions by ~50 % in adults. It was developed as an anticancer drug and has been used to treat myeloproliferative syndromes-leukemia, melanoma, and ovarian cancer. It was approved for use by FDA in adults. Side effects includes neutropenia, bone marrow suppression, elevation of hepatic enzymes, anorexia, nausea, vomiting and infertility.
Haloperidol is a phenyl-piperidinyl-butyrophenone that is used primarily to treat schizophrenia and other psychoses. It is also used in schizoaffective disorder, delusional disorders, ballism, and Tourette syndrome (a drug of choice) and occasionally as adjunctive therapy in mental retardation and the chorea of Huntington disease. It is a potent antiemetic and is used in the treatment of intractable hiccups. Haloperidol also exerts sedative and antiemetic activity. Haloperidol principal pharmacological effects are similar to those of piperazine-derivative phenothiazines. The drug has action at all levels of the central nervous system-primarily at subcortical levels-as well as on multiple organ systems. Haloperidol has strong antiadrenergic and weaker peripheral anticholinergic activity; ganglionic blocking action is relatively slight. It also possesses slight antihistaminic and antiserotonin activity. The precise mechanism whereby the therapeutic effects of haloperidol are produced is not known, but the drug appears to depress the CNS at the subcortical level of the brain, midbrain, and brain stem reticular formation. Haloperidol seems to inhibit the ascending reticular activating system of the brain stem (possibly through the caudate nucleus), thereby interrupting the impulse between the diencephalon and the cortex. The drug may antagonize the actions of glutamic acid within the extrapyramidal system, and inhibitions of catecholamine receptors may also contribute to haloperidol's mechanism of action. Haloperidol may also inhibit the reuptake of various neurotransmitters in the midbrain, and appears to have a strong central antidopaminergic and weak central anticholinergic activity. The drug produces catalepsy and inhibits spontaneous motor activity and conditioned avoidance behaviours in animals. The exact mechanism of antiemetic action of haloperidol has also not been fully determined, but the drug has been shown to directly affect the chemoreceptor trigger zone (CTZ) through the blocking of dopamine receptors in the CTZ. Haloperidol is marketed under the trade name Haldol among others.

Showing 191 - 200 of 911 results