{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Status:
US Approved Rx
(1998)
Source:
NDA020805
(1998)
Source URL:
First approved in 1951
Source:
HYDROCORTONE by MERCK
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Hydrocortisone is the main glucocorticoid secreted by the adrenal cortex. Its synthetic counterpart is used, either as an injection or topically, in the treatment of inflammation, allergy, collagen diseases, asthma, adrenocortical deficiency, shock, and some neoplastic conditions. Topical hydrocortisone is used for its anti-inflammatory or immunosuppressive properties to treat inflammation due to corticosteroid-responsive dermatoses. Hydrocortisone binds to the cytosolic glucocorticoid receptor. After binding the receptor the newly formed receptor-ligand complex translocates itself into the cell nucleus, where it binds to many glucocorticoid response elements (GRE) in the promoter region of the target genes. The DNA bound receptor then interacts with basic transcription factors, causing the increase in expression of specific target genes. The anti-inflammatory actions of corticosteroids are thought to involve lipocortins, phospholipase A2 inhibitory proteins which, through inhibition arachidonic acid, control the biosynthesis of prostaglandins and leukotrienes. Specifically glucocorticoids induce lipocortin-1 (annexin-1) synthesis, which then binds to cell membranes preventing the phospholipase A2 from coming into contact with its substrate arachidonic acid. This leads to diminished eicosanoid production. The cyclooxygenase (both COX-1 and COX-2) expression is also suppressed, potentiating the effect. In other words, the two main products in inflammation Prostaglandins and Leukotrienes are inhibited by the action of Glucocorticoids. Glucocorticoids also stimulate the lipocortin-1 escaping to the extracellular space, where it binds to the leukocyte membrane receptors and inhibits various inflammatory events: epithelial adhesion, emigration, chemotaxis, phagocytosis, respiratory burst and the release of various inflammatory mediators (lysosomal enzymes, cytokines, tissue plasminogen activator, chemokines etc.) from neutrophils, macrophages and mastocytes. Additionally the immune system is suppressed by corticosteroids due to a decrease in the function of the lymphatic system, a reduction in immunoglobulin and complement concentrations, the precipitation of lymphocytopenia, and interference with antigen-antibody binding. For the relief of the inflammatory and pruritic manifestations of corticosteroid-responsive dermatoses. Also used to treat endocrine (hormonal) disorders (adrenal insufficiency, Addisons disease). Hydrocortisone is also used to treat many immune and allergic disorders, such as arthritis, lupus, severe psoriasis, severe asthma, ulcerative colitis, and Crohn's disease.
Status:
US Approved Rx
(1998)
Source:
NDA020805
(1998)
Source URL:
First approved in 1951
Source:
HYDROCORTONE by MERCK
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Hydrocortisone is the main glucocorticoid secreted by the adrenal cortex. Its synthetic counterpart is used, either as an injection or topically, in the treatment of inflammation, allergy, collagen diseases, asthma, adrenocortical deficiency, shock, and some neoplastic conditions. Topical hydrocortisone is used for its anti-inflammatory or immunosuppressive properties to treat inflammation due to corticosteroid-responsive dermatoses. Hydrocortisone binds to the cytosolic glucocorticoid receptor. After binding the receptor the newly formed receptor-ligand complex translocates itself into the cell nucleus, where it binds to many glucocorticoid response elements (GRE) in the promoter region of the target genes. The DNA bound receptor then interacts with basic transcription factors, causing the increase in expression of specific target genes. The anti-inflammatory actions of corticosteroids are thought to involve lipocortins, phospholipase A2 inhibitory proteins which, through inhibition arachidonic acid, control the biosynthesis of prostaglandins and leukotrienes. Specifically glucocorticoids induce lipocortin-1 (annexin-1) synthesis, which then binds to cell membranes preventing the phospholipase A2 from coming into contact with its substrate arachidonic acid. This leads to diminished eicosanoid production. The cyclooxygenase (both COX-1 and COX-2) expression is also suppressed, potentiating the effect. In other words, the two main products in inflammation Prostaglandins and Leukotrienes are inhibited by the action of Glucocorticoids. Glucocorticoids also stimulate the lipocortin-1 escaping to the extracellular space, where it binds to the leukocyte membrane receptors and inhibits various inflammatory events: epithelial adhesion, emigration, chemotaxis, phagocytosis, respiratory burst and the release of various inflammatory mediators (lysosomal enzymes, cytokines, tissue plasminogen activator, chemokines etc.) from neutrophils, macrophages and mastocytes. Additionally the immune system is suppressed by corticosteroids due to a decrease in the function of the lymphatic system, a reduction in immunoglobulin and complement concentrations, the precipitation of lymphocytopenia, and interference with antigen-antibody binding. For the relief of the inflammatory and pruritic manifestations of corticosteroid-responsive dermatoses. Also used to treat endocrine (hormonal) disorders (adrenal insufficiency, Addisons disease). Hydrocortisone is also used to treat many immune and allergic disorders, such as arthritis, lupus, severe psoriasis, severe asthma, ulcerative colitis, and Crohn's disease.
Status:
US Approved Rx
(2000)
Source:
NDA021011
(2000)
Source URL:
First approved in 1950
Source:
NDA007337
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Oxycodone is a semisynthetic opioid used for the management of acute and chronic pain severe enough to require an opioid analgesic and for which alternative treatments are inadequate. Oxycodone is a highly selective full agonist of the μ-opioid receptor (MOR), with low affinity for the δ-opioid receptor (DOR) and κ-opioid receptor (KOR). After oxycodone binds to the MOR, a G protein-complex is released, which inhibits the release of neurotransmitters by the cell by reducing the amount of cAMP produced, closing calcium channels, and opening potassium channels. After a dose of conventional (instant-release) oral oxycodone, the onset of action is 10–30 minutes, and peak plasma levels of the drug are attained within roughly 30–60 minutes in contrast, after a dose of OxyContin (an oral controlled-release formulation), peak plasma levels of oxycodone occur in about three hours. The duration of instant-release oxycodone is 3 to 6 hours, although this can be variable depending on the individual. Oxycodone in the blood is distributed to skeletal muscle, liver, intestinal tract, lungs, spleen, and brain. Serious side effects of oxycodone include reduced sensitivity to pain (beyond the pain the drug is taken to reduce), euphoria, anxiolysis, feelings of relaxation, and respiratory depression. Common side effects of oxycodone include constipation (23%), nausea (23%), vomiting (12%), somnolence (23%), dizziness (13%), itching (13%), dry mouth (6%), and sweating (5%).
Status:
US Approved Rx
(2000)
Source:
NDA021011
(2000)
Source URL:
First approved in 1950
Source:
NDA007337
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Oxycodone is a semisynthetic opioid used for the management of acute and chronic pain severe enough to require an opioid analgesic and for which alternative treatments are inadequate. Oxycodone is a highly selective full agonist of the μ-opioid receptor (MOR), with low affinity for the δ-opioid receptor (DOR) and κ-opioid receptor (KOR). After oxycodone binds to the MOR, a G protein-complex is released, which inhibits the release of neurotransmitters by the cell by reducing the amount of cAMP produced, closing calcium channels, and opening potassium channels. After a dose of conventional (instant-release) oral oxycodone, the onset of action is 10–30 minutes, and peak plasma levels of the drug are attained within roughly 30–60 minutes in contrast, after a dose of OxyContin (an oral controlled-release formulation), peak plasma levels of oxycodone occur in about three hours. The duration of instant-release oxycodone is 3 to 6 hours, although this can be variable depending on the individual. Oxycodone in the blood is distributed to skeletal muscle, liver, intestinal tract, lungs, spleen, and brain. Serious side effects of oxycodone include reduced sensitivity to pain (beyond the pain the drug is taken to reduce), euphoria, anxiolysis, feelings of relaxation, and respiratory depression. Common side effects of oxycodone include constipation (23%), nausea (23%), vomiting (12%), somnolence (23%), dizziness (13%), itching (13%), dry mouth (6%), and sweating (5%).
Status:
US Approved Rx
(2000)
Source:
NDA021011
(2000)
Source URL:
First approved in 1950
Source:
NDA007337
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Oxycodone is a semisynthetic opioid used for the management of acute and chronic pain severe enough to require an opioid analgesic and for which alternative treatments are inadequate. Oxycodone is a highly selective full agonist of the μ-opioid receptor (MOR), with low affinity for the δ-opioid receptor (DOR) and κ-opioid receptor (KOR). After oxycodone binds to the MOR, a G protein-complex is released, which inhibits the release of neurotransmitters by the cell by reducing the amount of cAMP produced, closing calcium channels, and opening potassium channels. After a dose of conventional (instant-release) oral oxycodone, the onset of action is 10–30 minutes, and peak plasma levels of the drug are attained within roughly 30–60 minutes in contrast, after a dose of OxyContin (an oral controlled-release formulation), peak plasma levels of oxycodone occur in about three hours. The duration of instant-release oxycodone is 3 to 6 hours, although this can be variable depending on the individual. Oxycodone in the blood is distributed to skeletal muscle, liver, intestinal tract, lungs, spleen, and brain. Serious side effects of oxycodone include reduced sensitivity to pain (beyond the pain the drug is taken to reduce), euphoria, anxiolysis, feelings of relaxation, and respiratory depression. Common side effects of oxycodone include constipation (23%), nausea (23%), vomiting (12%), somnolence (23%), dizziness (13%), itching (13%), dry mouth (6%), and sweating (5%).
Status:
US Approved Rx
(1999)
Source:
ANDA040319
(1999)
Source URL:
First approved in 1950
Source:
BENTYL by ALLERGAN
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Dicyclomine is an anticholinergic tertiary amine used frequently by oral and parenteral route as an effective anti-spasmodic agent. Dicyclomine hydrochloride salt is approved under brand name bentyl for the treatment of functional bowel/irritable bowel syndrome. In addition is known, that dicyclomine is also used in morning and motion sickness, dysmenorrheal, intestinal hypermotility. It was shown, that Dicyclomine is a selective M1 and M3 muscarinic receptors antagonist, but os shown pharmacological activity via the M1 receptor.
Status:
US Approved Rx
(2000)
Source:
NDA021011
(2000)
Source URL:
First approved in 1950
Source:
NDA007337
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Oxycodone is a semisynthetic opioid used for the management of acute and chronic pain severe enough to require an opioid analgesic and for which alternative treatments are inadequate. Oxycodone is a highly selective full agonist of the μ-opioid receptor (MOR), with low affinity for the δ-opioid receptor (DOR) and κ-opioid receptor (KOR). After oxycodone binds to the MOR, a G protein-complex is released, which inhibits the release of neurotransmitters by the cell by reducing the amount of cAMP produced, closing calcium channels, and opening potassium channels. After a dose of conventional (instant-release) oral oxycodone, the onset of action is 10–30 minutes, and peak plasma levels of the drug are attained within roughly 30–60 minutes in contrast, after a dose of OxyContin (an oral controlled-release formulation), peak plasma levels of oxycodone occur in about three hours. The duration of instant-release oxycodone is 3 to 6 hours, although this can be variable depending on the individual. Oxycodone in the blood is distributed to skeletal muscle, liver, intestinal tract, lungs, spleen, and brain. Serious side effects of oxycodone include reduced sensitivity to pain (beyond the pain the drug is taken to reduce), euphoria, anxiolysis, feelings of relaxation, and respiratory depression. Common side effects of oxycodone include constipation (23%), nausea (23%), vomiting (12%), somnolence (23%), dizziness (13%), itching (13%), dry mouth (6%), and sweating (5%).
Status:
US Approved Rx
(2000)
Source:
NDA021011
(2000)
Source URL:
First approved in 1950
Source:
NDA007337
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Oxycodone is a semisynthetic opioid used for the management of acute and chronic pain severe enough to require an opioid analgesic and for which alternative treatments are inadequate. Oxycodone is a highly selective full agonist of the μ-opioid receptor (MOR), with low affinity for the δ-opioid receptor (DOR) and κ-opioid receptor (KOR). After oxycodone binds to the MOR, a G protein-complex is released, which inhibits the release of neurotransmitters by the cell by reducing the amount of cAMP produced, closing calcium channels, and opening potassium channels. After a dose of conventional (instant-release) oral oxycodone, the onset of action is 10–30 minutes, and peak plasma levels of the drug are attained within roughly 30–60 minutes in contrast, after a dose of OxyContin (an oral controlled-release formulation), peak plasma levels of oxycodone occur in about three hours. The duration of instant-release oxycodone is 3 to 6 hours, although this can be variable depending on the individual. Oxycodone in the blood is distributed to skeletal muscle, liver, intestinal tract, lungs, spleen, and brain. Serious side effects of oxycodone include reduced sensitivity to pain (beyond the pain the drug is taken to reduce), euphoria, anxiolysis, feelings of relaxation, and respiratory depression. Common side effects of oxycodone include constipation (23%), nausea (23%), vomiting (12%), somnolence (23%), dizziness (13%), itching (13%), dry mouth (6%), and sweating (5%).
Status:
US Approved Rx
(2023)
Source:
ANDA211703
(2023)
Source URL:
First approved in 1948
Source:
ISUPREL by SANOFI AVENTIS US
Source URL:
Class (Stereo):
CHEMICAL (EPIMERIC)
Targets:
Conditions:
Isoproterenol (trade names Medihaler-Iso and Isuprel) is a medication used for the treatment of bradycardia (slow heart rate), heart block, and rarely for asthma. Isoproterenol is a non-selective β adrenoreceptor agonist and TAAR1 agonist that is the isopropylaminomethyl analog of epinephrine. Isoprenaline's effects on the cardiovascular system (non-selective) relate to its actions on cardiac β1 receptors and β2 receptors on smooth muscle within the tunica media of arterioles. Isoprenaline has positive inotropic and chronotropic effects on the heart. β2 adrenoceptor stimulation in arteriolar smooth muscle induces vasodilation. Its inotropic and chronotropic effects elevate systolic blood pressure, while its vasodilatory effects tend to lower diastolic blood pressure. The overall effect is to decrease mean arterial pressure due to the β2 receptors' vasodilation. The adverse effects of isoprenaline are also related to the drug's cardiovascular effects. Isoprenaline can produce tachycardia (an elevated heart rate), which predisposes patients to cardiac arrhythmias.
Status:
US Approved Rx
(2023)
Source:
ANDA211703
(2023)
Source URL:
First approved in 1948
Source:
ISUPREL by SANOFI AVENTIS US
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
Targets:
Conditions:
Isoproterenol (trade names Medihaler-Iso and Isuprel) is a medication used for the treatment of bradycardia (slow heart rate), heart block, and rarely for asthma. Isoproterenol is a non-selective β adrenoreceptor agonist and TAAR1 agonist that is the isopropylaminomethyl analog of epinephrine. Isoprenaline's effects on the cardiovascular system (non-selective) relate to its actions on cardiac β1 receptors and β2 receptors on smooth muscle within the tunica media of arterioles. Isoprenaline has positive inotropic and chronotropic effects on the heart. β2 adrenoceptor stimulation in arteriolar smooth muscle induces vasodilation. Its inotropic and chronotropic effects elevate systolic blood pressure, while its vasodilatory effects tend to lower diastolic blood pressure. The overall effect is to decrease mean arterial pressure due to the β2 receptors' vasodilation. The adverse effects of isoprenaline are also related to the drug's cardiovascular effects. Isoprenaline can produce tachycardia (an elevated heart rate), which predisposes patients to cardiac arrhythmias.