U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Class (Stereo):
CHEMICAL (ABSOLUTE)



Pentostatin, also known as 2’-deoxycoformycin (DCF) under the trade name Nipent, is a potent inhibitor of the enzyme adenosine deaminase and is isolated from fermentation cultures of Streptomyces antibioticus. It was developed by Parke-Davis (now Pfizer) and the National Cancer Institute in the US. Nipent is indicated as single-agent treatment for both untreated and alpha-interferon-refractory hairy cell leukemia patients with active disease as defined by clinically significant anemia, neutropenia, thrombocytopenia, or disease-related symptoms. Pentostatin is a potent transition state inhibitor of the enzyme adenosine deaminase (ADA). The greatest activity of ADA is found in cells of the lymphoid system with T-cells having higher activity than B-cells, and T-cell malignancies having higher ADA activity than B-cell malignancies. Pentostatin inhibition of ADA, particularly in the presence of adenosine or deoxyadenosine, leads to cytotoxicity, and this is believed to be due to elevated intracellular levels of dATP, which can block DNA synthesis through inhibition of ribonucleotide reductase. Pentostatin can also inhibit RNA synthesis as well as cause increased DNA damage. In addition to elevated dATP, these mechanisms may also contribute to the overall cytotoxic effect of pentostatin. The precise mechanism of pentostatin’s antitumor effect, however, in hairy cell leukemia is not known. In several instances, hepatic toxicity from pentostatin appeared to be somewhat dose related, suggesting that the liver injury is a direct effect of the purine analogue. Because pentostatin is a potent immunosuppressive agent, the possibility exists that some cases of hepatic injury are due to reactivation of hepatitis B or other opportunistic infections. While pentostatin has not been shown to cause reactivation of hepatitis B, there is a strong possibility that it might induce this syndrome, and several cases of hepatic injury during pentostatin therapy were described as due to concurrent hepatitis B.
Mitoxantrone (NOVANTRONE) is a synthetic antineoplastic anthracenedione. Mitoxantrone, a DNA-reactive agent that intercalates into deoxyribonucleic acid (DNA) through hydrogen bonding, causes crosslinks and strand breaks. Mitoxantrone also interferes with ribonucleic acid (RNA) and is a potent inhibitor of topoisomerase II, an enzyme responsible for uncoiling and repairing damaged DNA. It has a cytocidal effect on both proliferating and nonproliferating cultured human cells, suggesting lack of cell cycle phase specificity. Mitoxantrone has been shown in vitro to inhibit B cell, T cell, and macrophage proliferation and impair antigen pre sentation, as well as the secretion of interferon gamma, TNFα, and IL-2. NOVANTRONE is indicated for reducing neurologic disability and/or the frequency of clinical relapses in patients with secondary (chronic) progressive, progressive relapsing, or worsening relapsing-remitting multiple sclerosis (i.e., patients whose neurologic status is significantly abnormal between relapses). NOVANTRONE in combination with corticosteroids is indicated as initial chemotherapy for the treatment of patients with pain related to advanced hormone-refractory prostate cancer. NOVANTRONE in combination with other approved drug(s) is indicated in the initial therapy of acute nonlymphocytic leukemia (ANLL) in adults. This category includes myelogenous, promyelocytic, monocytic, and erythroid acute leukemias.
Daunorubicin, also known as daunomycin, is a chemotherapy medication used to treat cancer. Specifically, it is used for acute myeloid leukemia (AML), acute lymphocytic leukemia (ALL), chronic myelogenous leukemia (CML), and Kaposi's sarcoma. Similar to doxorubicin, daunorubicin interacts with DNA by intercalation and inhibition of macromolecular biosynthesis. This inhibits the progression of the enzyme topoisomerase II, which relaxes supercoils in DNA for transcription. Daunorubicin stabilizes the topoisomerase II complex after it has broken the DNA chain for replication, preventing the DNA double helix from being resealed and thereby stopping the process of replication. On binding to DNA, daunomycin intercalates, with its daunosamine residue directed toward the minor groove. It has the highest preference for two adjacent G/C base pairs flanked on the 5' side by an A/T base pair. Daunorubicin should only be administered in a rapid intravenous infusion. It should not be administered intramuscularly or subcutaneously, since it may cause extensive tissue necrosis. It should also never be administered intrathecally (into the spinal canal), as this will cause extensive damage to the nervous system and may lead to death.
Doxorubicin is an antineoplastic in the anthracycline class. General properties of drugs in this class include: interaction with DNA in a variety of different ways including intercalation (squeezing between the base pairs), DNA strand breakage and inhibition with the enzyme topoisomerase II. Most of these compounds have been isolated from natural sources and antibiotics. However, they lack the specificity of the antimicrobial antibiotics and thus produce significant toxicity. The anthracyclines are among the most important antitumor drugs available. Doxorubicin is widely used for the treatment of several solid tumors while daunorubicin and idarubicin are used exclusively for the treatment of leukemia. Doxorubicin may also inhibit polymerase activity, affect regulation of gene expression, and produce free radical damage to DNA. Doxorubicin possesses an antitumor effect against a wide spectrum of tumors, either grafted or spontaneous. Doxorubicin is used to produce regression in disseminated neoplastic conditions like acute lymphoblastic leukemia, acute myeloblastic leukemia, Wilms’ tumor, neuroblastoma, soft tissue and bone sarcomas, breast carcinoma, ovarian carcinoma, transitional cell bladder carcinoma, thyroid carcinoma, gastric carcinoma, Hodgkin’s disease, malignant lymphoma and bronchogenic carcinoma in which the small cell histologic type is the most responsive compared to other cell types. Doxorubicin is also indicated for use as a component of adjuvant therapy in women with evidence of axillary lymph node involvement following resection of primary breast cancer.
The mitomycins are a family of aziridine-containing natural products isolated from Streptomyces caespitosus or Streptomyces lavendulae. One of these compounds, mitomycin C, finds use as a chemotherapeutic agent by virtue of its antitumour activity. Mitomycin C has also been used topically rather than intravenously in several areas. The first is cancers, particularly bladder cancers and intraperitoneal tumours. It is now well known that a single instillation of this agent within 6 hours of bladder tumor resection can prevent recurrence. The second is in eye surgery where mitomycin C 0.02% is applied topically to prevent scarring during glaucoma filtering surgery and to prevent haze after PRK or LASIK; mitomycin C has also been shown to reduce fibrosis in strabismus surgery. The third is in esophageal and tracheal stenosis where application of mitomycin C onto the mucosa immediately following dilatation will decrease re-stenosis by decreasing the production of fibroblasts and scar tissue. Mitomycin C is a potent DNA crosslinker. A single crosslink per genome has shown to be effective in killing bacteria. This is accomplished by reductive activation of mitomycin to form a mitosene, which reacts successively via N-alkylation of two DNA bases. Both alkylations are sequence specific for a guanine nucleoside in the sequence 5'-CpG-3'. Potential bis-alkylating heterocylic quinones were synthetised in order to explore their antitumoral activities by bioreductive alkylation. Mitomycin is also used as a chemotherapeutic agent in glaucoma surgery.
Floxuridine is a pyrimidine analog that acts as an inhibitor of the S-phase of cell division. This selectively kills rapidly dividing cells. Floxuridine is an anti-metabolite. Anti-metabolites masquerade as pyramidine-like molecules which prevents normal pyrimidines from being incorporated into DNA during the S phase of the cell cycle. Flurouracil (the end-product of catabolism of floxuridine) blocks an enzyme which converts cytosine nucleosides into the deoxy derivative. In addition, DNA synthesis is further inhibited because fluoruracil blocks the incorporation of the thymdine nucleotide into the DNA strand. Floxuridine is used for palliative management of gastrointestinal adenocarcinoma metastatic to the liver, when given by continuous regional intra-arterial infusion in carefully selected patients who are considered incurable by surgery or other means. Also for the palliative management of liver cancer (usually administered by hepatic intra-arterial infusion).Floxuridine first gained FDA approval in December 1970 under the brand name FUDR. The drug was initially marketed by Roche, which also did a lot of the initial work on 5-fluorouracil. The National Cancer Institute was an early developer of the drug. Roche sold its FUDR product line in 2001 to F H Faulding, which became Mayne Pharma.
Vinblastine is a Vinca alkaloid obtained from the Madagascar periwinkle plant. Vinca alkaloids were found out in the 1950's by Canadian scientists, Robert Noble and Charles Beer for the first time. Medicinal applications of this plant lead to the monitoring of these compounds for their hypoglycemic activity, which is of little importance compared to their cytotoxic effects. They have been used to treat diabetes, high blood pressure and the drugs have even been used as disinfectants. Nevertheless, the vinca alkaloids are so important for being cancer fighters. The mechanism of action of vinblastine sulfate has been related to the inhibition of microtubule formation in the mitotic spindle, resulting in an arrest of dividing cells at the metaphase stage. Vinblastine is an antineoplastic agent used to treat Hodgkin's disease, non-Hodgkin's lymphomas, mycosis fungoides, cancer of the testis, Kaposi's sarcoma, Letterer-Siwe disease, as well as other cancers.
Prednisolone hemisuccinate is a prodrug of a glucocorticoid agonist prednisolone, which is marketed under trade name Prednisolut in Germany and Austria. Prednisolone hemisuccinate is used in emergency medicine to treate shock due to allergic reaction, insect and snake bites, in neurology to treat brain edema and meningitis, in transplantation medicine to reduce risk of organ refection after kidney transplane, in pneumology to treat acute asthma attack, pulmonary edema, in severe or life-threatening situation in rheumatic diseases.
Leucovorin is a compound similar to folic acid, which is a necessary vitamin. It has been around and in use for many decades. Leucovorin is a medication frequently used in combination with the chemotherapy drugs fluoruracil and methotrexate. Leucovorin is not a chemotherapy drug itself, however it is used in addition to these chemotherapy drugs to enhance anticancer effects (with fluorouracil) or to help prevent or lessen side effects (with methotrexate). Leucovorin is also used by itself to treat certain anemia problems when folic acid deficiency is present.
Streptozotocin (Streptozocin, STZ, Zanosar) is a naturally occurring chemical that is particularly toxic to the insulin-producing beta cells of the pancreas in mammals. It is used in medicine for treating certain cancers of the Islets of Langerhans and used in medical research to produce an animal model for hyperglycemia in a large dose as well as Type 1 diabetes with multiple low doses. Streptozocin inhibits DNA synthesis in bacterial and mammalian cells. In bacterial cells, a specific interaction with cytosine moieties leads to degradation of DNA. The biochemical mechanism leading to mammalian cell death has not been definitely established; streptozocin inhibits cell proliferation at a considerably lower level than that needed to inhibit precursor incorporation into DNA or to inhibit several of the enzymes involved in DNA synthesis. Although streptozocin inhibits the progression of cells into mitosis, no specific phase of the cell cycle is particularly sensitive to its lethal effects. Streptozocin is active in the L1210 leukemic mouse over a fairly wide range of parenteral dosage schedules. In experiments in many animal species, streptozocin induced a diabetes that resembles human hyperglycemic nonketotic diabetes mellitus. This phenomenon, which has been extensively studied, appears to be mediated through a lowering of beta cell nicotinamide adenine dinucleotide (NAD) and consequent histopathologic alteration of pancreatic islet beta cells. The metabolism and the chemical dissociation of streptozocin that occurs under physiologic conditions has not been extensively studied. When administered intravenously to a variety of experimental animals, streptozocin disappears from the blood very rapidly. In all species tested, it was found to concentrate in the liver and kidney. As much as 20% of the drug (or metabolites containing an N-nitrosourea group) is metabolized and/or excreted by the kidney. Metabolic products have not yet been identified.