{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Status:
US Approved Rx
(2015)
Source:
ANDA204003
(2015)
Source URL:
First approved in 2008
Source:
NDA021992
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
Conditions:
Desvenlafaxine is a dual serotonin and norepinephrine reuptake inhibitor in vitro and in vivo that demonstrates good brain-to-plasma ratios.
Desvenlafaxine has demonstrated antidepressant effects in preclinical studies. Pfizer is developing an oral, extended-release formulation of desvenlafaxine for the treatment of major depressive disorder. Desvenlafaxine has been registered and is available on the market for the treatment of major depressive disorder in adults.
Status:
US Approved Rx
(2007)
Source:
NDA021829
(2007)
Source URL:
First approved in 2007
Source:
NDA021829
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Rotigotine is an agonist at all 5 dopamine receptor subtypes (D1-D5) but binds to the D3 receptor with the highest affinity. It is also an antagonist at α-2-adrenergic receptors and an agonist at the 5HT1A receptors. Rotigotine also inhibits dopamine uptake and prolactin secretion. It is FDA approved for the treatment of Parkinson's disease, restless legs syndrome. Dopamine antagonists, such as antipsychotics or metoclopramide, may diminish the effectiveness of Rotigotine. Common adverse reactions include nausea, vomiting, somnolence, application site reactions, dizziness, anorexia, hyperhidrosis, insomnia and dyskinesia.
Status:
US Approved Rx
(2006)
Source:
NDA021991
(2006)
Source URL:
First approved in 2006
Source:
NDA021991
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Vorinostat (rINN) or suberoylanilide hydroxamic acid (SAHA), is a drug currently under investigation for the treatment of cutaneous T cell lymphoma (CTCL). Vorinostat inhibits the enzymatic activity of histone deacetylases HDAC1, HDAC2 and HDAC3 (Class I) and HDAC6 (Class II) at nanomolar concentrations (IC50< 86 nM). These enzymes catalyze the removal of acetyl groups from the lysine residues of histones proteins. In some cancer cells, there is an overexpression of HDACs, or an aberrant recruitment of HDACs to oncogenic transcription factors causing hypoacetylation of core nucleosomal histones. By inhibiting histone deacetylase, vorinostat causes the accumulation of acetylated histones and induces cell cycle arrest and/or apoptosis of some transformed cells. The mechanism of the antineoplastic effect of vorinostat has not been fully characterized. Vorinostat is used for the treatment of cutaneous manifestations in patients with cutaneous T-cell lymphoma who have progressive, persistent or recurrent disease on or following two systemic therapies. Vorinostat is marketed under the name Zolinza by Merck for the treatment of cutaneous manifestations in patients with cutaneous T cell lymphoma (CTCL) when the disease persists, gets worse, or comes back during or after two systemic therapies.
Status:
US Approved Rx
(2005)
Source:
NDA021923
(2005)
Source URL:
First approved in 2005
Source:
NDA021923
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Sorafenib (BAY 43-9006), marketed as Nexavar by Bayer, is a drug approved for the treatment of advanced renal cell carcinoma (primary kidney cancer, hepatocellular carcinoma and for the treatment of patients with locally recurrent or metastatic, progressive, differentiated thyroid carcinoma (DTC) that is refractory to radioactive iodine treatment. It has also received "Fast Track" designation by the FDA for the treatment of advanced hepatocellular carcinoma (primary liver cancer), and has since performed well in Phase III trials. Sorafenib was shown to interact with multiple intracellular (CRAF, BRAF and mutant BRAF) and cell surface kinases (KIT, FLT- 3, VEGFR- 2, VEGFR- 3, and PDGFR- ß). Several of these kinases are thought to be involved in angiogenesis. Thus, sorafenib may inhibit tumor growth by a dual mechanism, acting either directly on the tumor (through inhibition of Raf and Kit signaling) and/or on tumor angiogenesis (through inhibition of VEGFR and PDGFR signaling). Sorafenib inhibited tumor growth of the murine renal cell carcinoma, RENCA, and several other human tumor xenografts in athymic mice. A reduction in tumor angiogenesis was seen in some tumor xenograft models.
Status:
US Approved Rx
(2020)
Source:
ANDA212786
(2020)
Source URL:
First approved in 1998
Source:
SUSTIVA by BRISTOL MYERS SQUIBB
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Efavirenz (brand names Sustiva® and Stocrin®) is a non-nucleoside reverse transcriptase inhibitor (NNRTI) and is used as part of highly active antiretroviral therapy (HAART) for the treatment of a human immunodeficiency virus (HIV) type 1. For HIV infection that has not previously been treated, efavirenz and lamivudine in combination with zidovudine or tenofovir is the preferred NNRTI-based regimen. Efavirenz is also used in combination with other antiretroviral agents as part of an expanded postexposure prophylaxis regimen to prevent HIV transmission for those exposed to materials associated with a high risk for HIV transmission.
Status:
US Approved Rx
(2012)
Source:
ANDA090540
(2012)
Source URL:
First approved in 1997
Source:
NDA020839
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Clopidogrel, an antiplatelet agent structurally and pharmacologically similar to ticlopidine, is used to inhibit blood clots in a variety of conditions such as peripheral vascular disease, coronary artery disease, and cerebrovascular disease. Clopidogrel is sold under the name Plavix by Sanofi and Bristol-Myers Squibb. Plavix (clopidogrel bisulfate) is an inhibitor of ADP-induced platelet aggregation acting by direct
inhibition of adenosine diphosphate (ADP) binding to its receptor and of the subsequent ADPmediated
activation of the glycoprotein GPIIb/IIIa complex. Clopidogrel must be metabolized by CYP450 enzymes to produce the active metabolite that
inhibits platelet aggregation. The active metabolite of clopidogrel selectively inhibits the
binding of adenosine diphosphate (ADP) to its platelet P2Y12 receptor and the subsequent ADPmediated
activation of the glycoprotein GPIIb/IIIa complex, thereby inhibiting platelet
aggregation. This action is irreversible. Consequently, platelets exposed to clopidogrel’s active
metabolite are affected for the remainder of their lifespan (about 7 to 10 days). Platelet
aggregation induced by agonists other than ADP is also inhibited by blocking the amplification
of platelet activation by released ADP. Plavix (clopidogrel bisulfate) is indicated for the reduction of atherothrombotic events.
Status:
US Approved Rx
(2010)
Source:
ANDA091629
(2010)
Source URL:
First approved in 1995
Source:
NDA020386
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Losartan is a selective, competitive angiotensin II receptor type 1 (AT1) antagonist. Losartant is recommended as one of several preferred agents for the initial management of hypertension. Administration of losartan reduces the risk of stroke in patients with hypertension and left ventricular hypertrophy. Losartan is indicated for the treatment of diabetic nephropathy with an elevated serum creatinine and proteinuria in patients with type 2 diabetes and a history of hypertension.
Status:
US Approved Rx
(2009)
Source:
ANDA079089
(2009)
Source URL:
First approved in 1995
Source:
NDA020498
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
Targets:
Bicalutamide (brand name Casodex) is an oral non-steroidal anti-androgen for prostate cancer. It is indicated for use in combination therapy with a luteinizing hormone-releasing hormone (LHRH) analog for the treatment of Stage D2 metastatic carcinoma of the prostate. Bicalutamide competitively inhibits the action of androgens by binding to cytosol androgen receptors in the target tissue. Prostatic carcinoma is known to be androgen sensitive and responds to treatment that counteracts the effect of androgen and/or removes the source of androgen. When CASODEX is combined with luteinizing hormone releasing hormone (LHRH) analog therapy, the suppression of serum testosterone induced by the LHRH analog is not affected. Bicalutamide is well-absorbed following oral administration, although the absolute bioavailability is unknown. Bicalutamide undergoes stereospecific metabolism. The S (inactive) isomer is metabolized primarily by glucuronidation. The R (active) isomer also undergoes glucuronidation but is predominantly oxidized to an inactive metabolite followed by glucuronidation. Both the parent and metabolite glucuronides are eliminated in the urine and feces. The S-enantiomer is rapidly cleared relative to the R-enantiomer, with the R-enantiomer accounting for about 99% of total steady-state plasma levels.
Status:
US Approved Rx
(2010)
Source:
ANDA078944
(2010)
Source URL:
First approved in 1995
Source:
NDA020541
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Anastrozole (marketed under the trade name Arimidex by AstraZeneca) is a drug indicated in the treatment of breast cancer in post-menopausal women. It is used both in adjuvant therapy (i.e. following surgery) and in metastatic breast cancer. It decreases the amount of estrogens that the body makes. Anastrozole belongs in the class of drugs known as aromatase inhibitors. It inhibits the enzyme aromatase, which is responsible for converting androgens (produced by women in the adrenal glands) to estrogens. The growth of many cancers of the breast is stimulated or maintained by estrogens. In postmenopausal women, estrogens are mainly derived from the action of the aromatase enzyme, which converts adrenal androgens (primarily androstenedione and testosterone) to estrone and estradiol. The suppression of estrogen biosynthesis in peripheral tissues and in the cancer tissue itself can therefore be achieved by specifically inhibiting the aromatase enzyme. Anastrozole is a selective non-steroidal aromatase inhibitor. It significantly lowers serum estradiol concentrations and has no detectable effect on formation of adrenal corticosteroids or aldosterone.
Status:
US Approved Rx
(2009)
Source:
ANDA076701
(2009)
Source URL:
First approved in 1994
Source:
NDA020241
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Lamotrigine (marketed as Lamictal) is an anticonvulsant drug used in the treatment of epilepsy and bipolar disorder. The precise mechanism(s) by which lamotrigine exerts its anticonvulsant action are unknown. In animal models designed to detect anticonvulsant activity, lamotrigine was effective in preventing seizure spread in the maximum electroshock (MES) and pentylenetetrazol (scMet) tests, and prevented seizures in the visually and electrically evoked after-discharge (EEAD) tests for antiepileptic activity. Lamotrigine also displayed inhibitory properties in the kindling model in rats both during kindling development and in the fully kindled state. The relevance of these models to human epilepsy, however, is not known. One proposed mechanism of action of lamotrigine, the relevance of which remains to be established in humans, involves an effect on sodium channels. In vitro pharmacological studies suggest that lamotrigine inhibits voltage-sensitive sodium channels, thereby stabilizing neuronal membranes and consequently modulating presynaptic transmitter release of excitatory amino acids (e.g., glutamate and aspartate). Effect of Lamotrigine on N-Methyl d-Aspartate-Receptor Mediated Activity Lamotrigine did not inhibit N-methyl d-aspartate (NMDA)-induced depolarizations in rat cortical slices or NMDA-induced cyclic GMP formation in immature rat cerebellum, nor did lamotrigine displace compounds that are either competitive or noncompetitive ligands at this glutamate receptor complex (CNQX, CGS, TCHP). The IC50 for lamotrigine effects on NMDA-induced currents (in the presence of 3 uM of glycine) in cultured hippocampal neurons exceeded 100 uM. The mechanisms by which lamotrigine exerts its therapeutic action in bipolar disorder have not been established. The mechanisms that underpin the passage of lamotrigine at the blood-brain barrier to its site of action in the brain is poorly understood.