U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 161 - 170 of 446 results

Permethrin is a synthetic pyrethrin derivative acts as a neurotoxin by depolarizing the nerve cell membrane. Permethrin disrupts the sodium channel current by which membrane repolarization is regulated resulting in fatal paralysis of the nerves in the exoskeletal respiratory muscles of susceptible arthropods, including lice and mite. Permethrin is sold under brand names NIx and Elimite to treat pediculosis, scabies and demodicidosis.
Quizartinib (AC220) is an orally bioavailable, small molecule receptor tyrosine kinase inhibitor that is being developed by Daiichi Sankyo Company (previously Ambit Biosciences) and Astellas Pharma as a treatment for acute myeloid leukaemia (AML), acute lymphoblastic leukaemia (ALL) and advanced solid tumours. The highest affinity target identified for Quizartinib was FLT3. The only other kinases with binding constants within 10-fold that for FLT3 were the closely related receptor tyrosine kinases KIT, PDGFRA, PDGFRB, RET, and CSF1R. Kinase inhibition of (mutant) KIT, PDGFR and FLT3 isoforms by quizartinib leads to potent inhibition of cellular proliferation and induction of apoptosis in in vitro leukemia models as well as in native leukemia blasts treated ex vivo.
Leniolisib (JOENJA®) is an oral selective phosphoinositide 3-kinase-delta (PI3Kdelta) inhibitor being developed by Pharming Group NV in-licensed from Novartis for the treatment of immunodeficiency disorders. Leniolisib inhibits PI3K-delta by blocking the active binding site of PI3K-delta. In cell-free isolated enzyme assays, leniolisib was selective for PI3K-delta over PI3K-alpha (28-fold), PI3K-beta (43-fold), and PI3K-gamma (257-fold), as well as the broader kinome. In cell-based assays, leniolisib reduced pAKT pathway activity and inhibited proliferation and activation of B and T cell subsets. Gain-of-function variants in the gene encoding the p110-delta catalytic subunit or loss of function variants in the gene encoding the p85-alpha regulatory subunit each cause hyperactivity of PI3K-delta. Leniolisib inhibits the signalling pathways that lead to increased production of PIP3, hyperactivity of the downstream mTOR/AKT pathway, and to the dysregulation of B and T cells. In March 2023, leniolisib received its first approval for the treatment of activated PI3Kdelta syndrome (APDS) in adult and paediatric patients 12 years of age and older. Leniolisib is also under regulatory review in European Union for the treatment of APDS. Development of leniolisib for the treatment of Sjögren's syndrome has been discontinued.
Quizartinib (AC220) is an orally bioavailable, small molecule receptor tyrosine kinase inhibitor that is being developed by Daiichi Sankyo Company (previously Ambit Biosciences) and Astellas Pharma as a treatment for acute myeloid leukaemia (AML), acute lymphoblastic leukaemia (ALL) and advanced solid tumours. The highest affinity target identified for Quizartinib was FLT3. The only other kinases with binding constants within 10-fold that for FLT3 were the closely related receptor tyrosine kinases KIT, PDGFRA, PDGFRB, RET, and CSF1R. Kinase inhibition of (mutant) KIT, PDGFR and FLT3 isoforms by quizartinib leads to potent inhibition of cellular proliferation and induction of apoptosis in in vitro leukemia models as well as in native leukemia blasts treated ex vivo.
Mitapivat (AG-348; PKM2 activator 1020) is a novel, first-in-class oral small molecule allosteric activator of the pyruvate kinase enzyme. Mitapivat has been shown to significantly upregulate both wild-type and numerous mutant forms of erythrocyte pyruvate kinase (PKR), increasing adenosine triphosphate (ATP) production and reducing levels of 2,3-diphosphoglycerate. Given this mechanism, mitapivat has been evaluated in clinical trials in a wide range of hereditary hemolytic anemias, including pyruvate kinase deficiency (PKD), sickle cell disease, and the thalassemias. Mitapivat was approved for the treatment of hemolytic anemia in adults with pyruvate kinase (PK) deficiency in the United States in February 2022, and in the European Union in November 2022.
Mitapivat (AG-348; PKM2 activator 1020) is a novel, first-in-class oral small molecule allosteric activator of the pyruvate kinase enzyme. Mitapivat has been shown to significantly upregulate both wild-type and numerous mutant forms of erythrocyte pyruvate kinase (PKR), increasing adenosine triphosphate (ATP) production and reducing levels of 2,3-diphosphoglycerate. Given this mechanism, mitapivat has been evaluated in clinical trials in a wide range of hereditary hemolytic anemias, including pyruvate kinase deficiency (PKD), sickle cell disease, and the thalassemias. Mitapivat was approved for the treatment of hemolytic anemia in adults with pyruvate kinase (PK) deficiency in the United States in February 2022, and in the European Union in November 2022.

Class (Stereo):
CHEMICAL (ABSOLUTE)



Ibrexafungerp (BREXAFEMME®) is an orally active triterpenoid antifungal drug being developed by SCYNEXIS, Inc. for the treatment of fungal infections. The inhibition of β-1,3-D glucan synthetase by ibrexafungerp compromises the integrity of fungal cell walls. Ibrexafungerp has been recently approved for the treatment of vulvovaginal candidiasis (VVC), and it is the first novel antifungal drug class to be approved in more than 20 years. Food and Drug Administration's decision was based on positive results from two pivotal phase III studies in which oral ibrexafungerp proved both safe and effective in patients with vulvovaginal candidiasis. Development for the treatment of recurrent VVC and invasive fungal infections is ongoing.

Class (Stereo):
CHEMICAL (ABSOLUTE)



Ibrexafungerp (BREXAFEMME®) is an orally active triterpenoid antifungal drug being developed by SCYNEXIS, Inc. for the treatment of fungal infections. The inhibition of β-1,3-D glucan synthetase by ibrexafungerp compromises the integrity of fungal cell walls. Ibrexafungerp has been recently approved for the treatment of vulvovaginal candidiasis (VVC), and it is the first novel antifungal drug class to be approved in more than 20 years. Food and Drug Administration's decision was based on positive results from two pivotal phase III studies in which oral ibrexafungerp proved both safe and effective in patients with vulvovaginal candidiasis. Development for the treatment of recurrent VVC and invasive fungal infections is ongoing.
Samidorphan, which was developed by Alkermes, is an opioid receptor antagonist that has been co-formulated with olanzapine into a single-dose oral tablet to mitigate the risk of weight gain while providing the therapeutic effect of olanzapine. In June 2021, the Food and Drug Administration (FDA) approved Lybalvi (olanzapine/samidorphan) for indications including treatment of adults with schizophrenia and/or bipolar I disorder (acute manic episodes or acute episodes with mixed features).
Fostemsavir (BMS-663068) is an investigational attachment inhibitor with a unique mechanism of action. It is a prodrug of temsavir, which binds to HIV envelope glycoprotein 120 (gp120), thereby preventing viral attachment to the host CD4 cell surface receptor. In the absence of effective binding of HIV gp120 with the host CD4 receptor, HIV does not enter the host cell. Because fostemsavir has a novel mechanism of action, the drug should have full activity against HIV strains that have developed resistance to other classes of antiretroviral medications. In a phase 2b study of treatment-experienced individuals, fostemsavir appeared to be well tolerated. Phase 3 studies are ongoing.

Showing 161 - 170 of 446 results