{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Status:
Investigational
Source:
NCT03086226: Phase 2 Interventional Completed Mycetoma
(2017)
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Ravuconazole is a triazole with antifungal properties that inhibits cytochrome P450 sterol 14a-demethylase, an enzyme involved in sterol synthesis, resulting in lysis of the fungal cell wall and fungal cell death. It was investigated for the treatment of aspergillosis, candidiasis, and onychomycosis, but these studies were discontinued. Ravuconazole is now in phase II clinical trials to investigate efficacy in preventing fungal infections in patients undergoing chemotherapy and stem cell transplantation.
Status:
Investigational
Source:
NCT04055649: Phase 2 Interventional Recruiting Malignant Ovarian Epithelial Tumor
(2020)
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
TIC10 (TIC10 isomer or ONC201 isomer) is a potent, orally active, and stable small molecule and is an efficacious antitumor therapeutic agent that acts on tumor cells and their microenvironment to enhance the concentrations of the endogenous tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). The isomeric structure of TIC10/ONC201 is critical to its activity: anti-cancer activity is associated with the angular structure and not the linear TIC10 isomer. TIC10 transcriptionally induces a sustained up-regulation TRAIL in tumors and normal cells in a p53-independent manner. TIC10 inactivates kinases Akt and extracellular signal-regulated kinase (ERK), leading to the translocation of Foxo3a into the nucleus, where it binds to the TRAIL promoter to up-regulate gene transcription. TIC10 crosses the blood-brain barrier. TIC10 treatment caused tumor regression in the HCT116 p53−/− xenograft, RKO human colon cancer xenograft–bearing mice and human triple-negative breast cancer xenografts and significantly prolonged the survival of Eμ-myc transgenic mice, which spontaneously develop metastatic lymphoma from weeks 9 to 12 of age by 4 weeks.
Status:
Investigational
Source:
NCT03025308: Phase 3 Interventional Active, not recruiting Rheumatoid Arthritis
(2017)
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Filgotinib (GLPG0634) is a highly selective JAK1 inhibitor. GLPG0634 is a promising drug candidate for the future treatment of autoimmune and inflammatory disorders. It is in phase III clinical trials (initiated mid-2016) for the treatment of rheumatoid arthritis, Crohn's disease and ulcerative colitis. Most common adverse events observed were infections, gastrointestinal disorders and nervous system disorders.
Status:
Investigational
Source:
NCT03117920: Phase 2 Interventional Completed Pancreatic Cancer
(2017)
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Omtriptolide (previously known as PG490-88 or F60008), an immunosuppressant that has been shown to be the safe and potent antitumor agent and it has been approved entry into Phase I clinical trial for the treatment of prostate cancer in the USA. In addition, the drug is participating in phase I clinical trial for the treatment of myeloid leukemia. Experiments on animals have shown omtriptolide was highly effective in the prevention of murine graft-versus-host disease (GVHD). The immunosuppressive effect of the drug was mediated by inhibition of alloreactive T cell expansion through interleukin-2 production. However, this study was discontinued. Recently published article has shown omtriptolide possesses the potential as a prophylactic agent to prevent ischemia/reperfusion (I/R)-induced lung injury.
Status:
Investigational
Source:
NCT00090532: Phase 1/Phase 2 Interventional Terminated Age-Related Macular Degeneration
(2004)
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Pfizer developed AG-013958, also known as AG-13958 for treatment of age-related macular degeneration (AMD). As a VEGFR tyrosine kinase inhibitor, AG13958 was targeted to FLT/TYK receptor inhibition.
Status:
Investigational
Source:
NCT00090532: Phase 1/Phase 2 Interventional Terminated Age-Related Macular Degeneration
(2004)
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Pfizer developed AG-013958, also known as AG-13958 for treatment of age-related macular degeneration (AMD). As a VEGFR tyrosine kinase inhibitor, AG13958 was targeted to FLT/TYK receptor inhibition.
Status:
Investigational
Source:
NCT02471846: Phase 1 Interventional Completed Solid Tumor
(2015)
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
NLG919 is a novel small-molecule IDO-pathway inhibitor. NLG919 potently inhibits this pathway in vitro and in cell-based assays. It is orally bioavailable and has a favorable pharmacokinetic and toxicity profile. In mice, a single oral administration of NLG919 reduces the concentration of plasma and tissue Kyn by ∼ 50%. Using IDO-expressing human monocyte-derived DCs in allogeneic MLR reactions, NLG919 potently blocked IDO-induced T cell suppression and restored robust T cell responses with an ED50=80 nM. Similarly, using IDO-expressing mouse DCs from tumor-draining lymph nodes, NLG919 abrogated IDO-induced suppression of antigen-specific T cells (OT-I) in vitro. In vivo, in mice bearing large established B16F10 tumors, administration of NLG919 markedly enhanced the anti-tumor responses of naïve, resting pmel-1 cells to vaccination with cognate hgp100 peptide plus CpG-1826 in IFA
Status:
Investigational
Source:
NCT03653546: Phase 2/Phase 3 Interventional Completed Non-small Cell Lung Cancer
(2018)
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
AZD-3759 is an oral inhibitor of both wild-type and mutant EGFR with IC50 values in nanomolar range. The drug was discovered by AstraZeneca for the treatment of non-small-cell lung cancer with CNS metastases. AZD-3759 can penetrate the blood-brain barrier and was confirmed to be effective in vitro with NSCLC cell lines as well as in mouse model of brain metastases. AZD-3759 is currently in Phase 1 clinical trial.
Status:
Investigational
Source:
NCT03070132: Phase 3 Interventional Withdrawn Trigeminal Neuralgia
(2023)
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Raxatrigine also known as GSK1014802 and CNV-1014802, is a novel analgesic under development by Convergence Pharmaceuticals for the treatment of lumbosacral radiculopathy (sciatica) and trigeminal neuralgia (TGN). It is a novel state dependent small molecule sodium channel blocker that preferentially inhibits the Nav 1.7 ion channel, a therapeutic target implicated by genetics in human pain conditions. Raxatrigine is thought to penetrate the central nervous system and block Nav channels in a novel manner. CNV1014802 was granted orphan drug designation in 2013 by the US Food and Drug Administration (FDA) for the treatment of trigeminal neuralgia.
Status:
Investigational
Source:
NCT02117258: Phase 2 Interventional Completed Metastatic Pancreatic Adenocarcinoma
(2014)
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Nastorazepide (Z-360) is a selective, orally available, gastrin/cholecystokinin 2 (CCK-2) receptor antagonist with potential antineoplastic activity. Z-360 binds to the gastrin/CCK-2 receptor, thereby preventing receptor activation by gastrin, a peptide hormone frequently associated with the proliferation of gastrointestinal and pancreatic tumor cells. It is currently under development as a therapeutic drug for pancreatic cancer, gastroesophageal reflux disease and peptic ulcers. The most commonly reported adverse events were nausea, abdominal pain, vomiting and fatigue.