{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Status:
US Approved Rx
(2024)
Source:
ANDA204146
(2024)
Source URL:
First approved in 1995
Source:
NDA020491
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
Targets:
Conditions:
Ibutilide is a 'pure' class III antiarrhythmic drug, used intravenously against atrial flutter and fibrillation. At a cellular level it exerts two main actions: induction of a persistent Na+ current sensitive to dihydropyridine Ca2+ channel blockers and potent inhibition of the cardiac rapid delayed rectifier K+ current, by binding within potassium channel pores. In other words, Ibutilide binds to and alters the activity of hERG potassium channels, delayed inward rectifier potassium (IKr) channels and L-type (dihydropyridine sensitive) calcium channels. Ibutilide is indicated for the rapid conversion of atrial fibrillation or atrial flutter of recent onset to sinus rhythm. Ibutilide is marketed as Corvert by Pfizer.
Status:
US Approved Rx
(2008)
Source:
NDA022260
(2008)
Source URL:
First approved in 1995
Source:
NDA020444
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Epoprostenol (marketed as FLOLAN, VELETRI) is a prostaglandin that is a powerful vasodilator and inhibits platelet aggregation. Epoprostenol (PGI2, PGX, prostacyclin), a metabolite of arachidonic acid, is a naturally occurring prostaglandin with potent vasodilatory activity and inhibitory activity of platelet
aggregation. FLOLAN (epoprostenol sodium) for Injection is a sterile sodium salt formulated for intravenous (IV) administration. Epoprostenol has two major pharmacological actions: (1) direct vasodilation of pulmonary and systemic arterial vascular beds, and (2) inhibition of platelet aggregation. In animals, the vasodilatory effects reduce right and left ventricular afterload and increase cardiac output and stroke volume. The effect of epoprostenol on heart rate in animals varies with dose. At low doses, there is vagally mediated brudycardia, but at higher doses, epoprostenol causes reflex tachycardia in response to direct vasodilation and hypotension. No major effects on cardiac conduction have been observed. Additional pharmacologic effects of epoprostenol in animals include bronchodilation, inhibition of gastric acid secretion, and decreased gastric emptying. No available chemical assay is sufficiently sensitive and specific to assess the in vivo human pharmacokinetics of epoprostenol. FLOLAN is indicated for the long-term intravenous treatment of primary pulmonary hypertension and pulmonary hypertension associated with the scleroderma spectrum of disease in NYHA Class III and Class IV patients who do not respond adequately to conventional therapy.
Status:
US Approved Rx
(2016)
Source:
ANDA204048
(2016)
Source URL:
First approved in 1995
Source:
RILUTEK by COVIS
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Riluzole, a member of the benzothiazole class, is indicated for the treatment of patients with amyotrophic lateral sclerosis. Its pharmacological properties include the following, some of which may be related to its effect: 1) an inhibitory effect on glutamate release (activation of glutamate reuptake), 2) inactivation of voltage-dependent sodium channels, and 3) ability to interfere with intracellular events that follow transmitter binding at excitatory amino acid receptors. Common adverse reactions include headache, abdominal pain, back pain, vomiting, dyspepsia, diarrhea, dizziness. Riluzole-treated patients that take other hepatotoxic drugs may be at increased risk for hepatotoxicity.
Status:
US Approved Rx
(2016)
Source:
NDA205879
(2016)
Source URL:
First approved in 1995
Source:
GLUCOPHAGE by EMD SERONO INC
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Metformin is the most widely used drug to treat type 2 diabetes, and is one of only two oral antidiabetic drugs on the World Health Organization (WHO) list of essential medicines.
Metformin is an antihyperglycemic agent which improves glucose tolerance in patients with type 2 diabetes, lowering both basal and postprandial plasma glucose. Metformin decreases hepatic glucose production, decreases intestinal absorption of glucose, and improves insulin sensitivity by increasing peripheral glucose uptake and utilization. However, we still do not completely understand its mechanisms of action. The main effect of this drug from the biguanide family is to acutely decrease hepatic glucose production, mostly through a mild and transient inhibition of the mitochondrial respiratory chain complex I. In addition, the resulting decrease in hepatic energy status activates AMPK (AMP-activated protein kinase), a cellular metabolic sensor, providing a generally accepted mechanism for the action of metformin on hepatic gluconeogenesis. The use of metformin, the most commonly prescribed drug for type 2 diabetes, was repeatedly associated with the decreased risk of the occurrence of various types of cancers, especially of pancreas and colon and hepatocellular carcinoma.
Status:
US Approved Rx
(2010)
Source:
ANDA091629
(2010)
Source URL:
First approved in 1995
Source:
NDA020386
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Losartan is a selective, competitive angiotensin II receptor type 1 (AT1) antagonist. Losartant is recommended as one of several preferred agents for the initial management of hypertension. Administration of losartan reduces the risk of stroke in patients with hypertension and left ventricular hypertrophy. Losartan is indicated for the treatment of diabetic nephropathy with an elevated serum creatinine and proteinuria in patients with type 2 diabetes and a history of hypertension.
Status:
US Approved Rx
(2018)
Source:
ANDA204717
(2018)
Source URL:
First approved in 1995
Source:
NDA020297
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
Targets:
Carvedilol competitively blocks β1, β2 and α1 receptors. The drug lacks sympathomimetic activity and has vasodilating properties that are exerted primarily through α1-blockade. Animal models indicate that carvedilol confers protection against myocardial necrosis, arrhythmia and cell damage caused by oxidising free radicals, and the drug has no adverse effects on plasma lipid profiles. COREG® (carvedilol) is a racemic mixture in which nonselective β-adrenoreceptor blocking activity is present in the S(-) enantiomer and α1-adrenergic blocking activity is present in both R(+) and S(-) enantiomers at equal potency. Carvedilol is the first drug of its kind to be approved for the treatment of congestive heart failure, and is now the standard of care for this devastating disease. Carvedilol is also confirmed as effective in the management of mild to moderate hypertension and ischaemic heart disease.
Status:
US Approved Rx
(2017)
Source:
ANDA202294
(2017)
Source URL:
First approved in 1995
Source:
NDA020406
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
Targets:
Conditions:
Dexlansoprazole (trade names Kapidex, Dexilant) is a proton pump inhibitor (PPI) that is marketed by Takeda Pharmaceuticals for the treatment of erosive esophagitis and gastro-oesophageal reflux disease. Dexlansoprazole is used to heal and maintain healing of erosive esophagitis and to treat heartburn associated with gastroesophageal reflux disease (GERD). It lasts longer than lansoprazole, to which it is chemically related, and needs to be taken less often. Dexlansoprazole is supplied for oral administration as a dual delayed-release formulation in capsules and orally disintegrating tablets. The capsules and tablets contain dexlansoprazole in a mixture of two types of enteric-coated granules with different pH-dependent dissolution profiles. The most significant adverse reactions (≥2%) reported in clinical trials were diarrhea, abdominal pain, nausea, upper respiratory tract infection, vomiting, and flatulence.
Status:
US Approved Rx
(2011)
Source:
ANDA200503
(2011)
Source URL:
First approved in 1995
Source:
ULTRAM by JANSSEN PHARMS
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
Targets:
Tramadol (sold under the brand name Ultram) is a narcotic analgesic proposed for moderate to severe pain. Tramadol and its O-desmethyl metabolite (M1) are selective, weak OP3-receptor agonists. Opiate receptors are coupled with G-protein receptors and function as both positive and negative regulators of synaptic transmission via G-proteins that activate effector proteins. As the effector system is adenylate cyclase and cAMP located at the inner surface of the plasma membrane, opioids decrease intracellular cAMP by inhibiting adenylate cyclase. Subsequently, the release of nociceptive neurotransmitters such as substance P, GABA, dopamine, acetylcholine, and noradrenaline is inhibited. The analgesic properties of Tramadol can be attributed to norepinephrine and serotonin reuptake blockade in the CNS, which inhibits pain transmission in the spinal cord. The (+) enantiomer has the higher affinity for the OP3 receptor and preferentially inhibits serotonin uptake and enhances serotonin release. The (-) enantiomer preferentially inhibits norepinephrine reuptake by stimulating alpha(2)-adrenergic receptors. Tramadol is used primarily to treat mild-severe pain, both acute and chronic. Its analgesic effects take about one hour to come into effect and 2 h to 4 h to peak after oral administration with an immediate-release formulation. On a dose-by-dose basis, tramadol has about one-tenth the potency of morphine and is approximately equally potent when compared to pethidine and codeine. The most common adverse effects of tramadol include nausea, dizziness, dry mouth, indigestion, abdominal pain, vertigo, vomiting, constipation, drowsiness, and headache. Compared to other opioids, respiratory depression and constipation are considered less of a problem with tramadol.
Status:
US Approved Rx
(1995)
Source:
NDA020564
(1995)
Source URL:
First approved in 1995
Source:
NDA020564
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Lamivudine is a reverse transcriptase inhibitor used alone or in combination with other classes of anti-human immunodeficiency virus (HIV) drugs in the treatment of HIV infection. This molecule has two stereo-centers, thus giving rise to four stereoisomers: (+/-)-cis-lamivudine and (+/-)-trans-lamivudine. The latter is considered to be impurity of the pharmaceutically active isomer, (-)-cis-lamivudine.
Status:
US Approved Rx
(2009)
Source:
ANDA079089
(2009)
Source URL:
First approved in 1995
Source:
NDA020498
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
Targets:
Bicalutamide (brand name Casodex) is an oral non-steroidal anti-androgen for prostate cancer. It is indicated for use in combination therapy with a luteinizing hormone-releasing hormone (LHRH) analog for the treatment of Stage D2 metastatic carcinoma of the prostate. Bicalutamide competitively inhibits the action of androgens by binding to cytosol androgen receptors in the target tissue. Prostatic carcinoma is known to be androgen sensitive and responds to treatment that counteracts the effect of androgen and/or removes the source of androgen. When CASODEX is combined with luteinizing hormone releasing hormone (LHRH) analog therapy, the suppression of serum testosterone induced by the LHRH analog is not affected. Bicalutamide is well-absorbed following oral administration, although the absolute bioavailability is unknown. Bicalutamide undergoes stereospecific metabolism. The S (inactive) isomer is metabolized primarily by glucuronidation. The R (active) isomer also undergoes glucuronidation but is predominantly oxidized to an inactive metabolite followed by glucuronidation. Both the parent and metabolite glucuronides are eliminated in the urine and feces. The S-enantiomer is rapidly cleared relative to the R-enantiomer, with the R-enantiomer accounting for about 99% of total steady-state plasma levels.