{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Status:
Possibly Marketed Outside US
Class (Stereo):
CHEMICAL (RACEMIC)
Conditions:
Suloctidil is considered to be calcium antagonist. In addition to its vascular antispasmodic activity, suloctidil affects blood platelets and enhances brain energy metabolism. Suloctidil was being evaluated in many clinical trials for use in dementia and thrombotic disorders. Suloctidil induces hepatotoxicity.
Status:
Possibly Marketed Outside US
Class (Stereo):
CHEMICAL (UNKNOWN)
Targets:
Conditions:
Cilnidipine (FRC-8653) is a dihydropyridine (DHP) type of calcium channel antagonist. The L-type Ca2+ channel blockade by cilnidipine affects predominantly vascular smooth muscle, thereby producing vasodilation of peripheral resistance vessels and coronary arteries. The blockade of N-type Ca2+ channels affects predominantly peripheral nerve endings of sympathetic neurons, thereby dilating blood vessels by lowering plasma catecholamine levels. Furthermore, renoprotective and neuroprotective effects as well as cardioprotective action of cilnidipine have been demonstrated in clinical practice or animal examinations. Cilnidipine was originated by Fuji & Rebio Pharmaceutical Co., Ltd. and developed jointly with Ajinomoto for the treatment of hypertension. Cilnidipine has been launched in Japan.
Status:
Possibly Marketed Outside US
Source:
ZANIDIP by Corsini, A.|Bonfatti, M.|Quarato, P.|Accomazzo, M.R.|Raiteri, M.|Sartani, A.|Testa, R.|Nicosia, S.|Paoletti, R.|Fumagalli, R.
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
(S)-Lercanidipine is enantiomer of antihypertensive drugs Lercanidipine, that acts by blocking L-type calcium channels, allowing relaxation and opening of blood vessels. The dihydropyridine calcium antagonists promote systemic vasodilatation by a reversible blockade of voltage-dependent Ca2+ influx through L-type channels in the cell membrane. (S)-Lercanidipine has 100- to 200-fold greater affinity than the (R)-enantiomer for the L-type calcium channel. The pharmacokinetics of (S)- Lercanidipine has been evaluated in healthy volunteers, in elderly and non-elderly patients with hypertension, and in patients with renal or hepatic impairment. Patients from these studies were investigated after receiving a single 10 or 20 mg dose of [14C]-labeled rac-Lercanidipine as a solution. The maximum plasma concentrations of (S)-Lercanidipine were reached within 2–3 h and the area under the plasma concentration-time curves were not linearly related to the dose, indicating a saturable first-pass metabolism. The absorption of (S)-LER increases after the ingestion of a high-fat meal. Lercanidipine is highly bound to plasma protein (>98%) in humans. Its volume of distribution of 2–2.5 L/kg was determined in healthy volunteers after intravenous infusion of 2 mg. Lercanidipine is extensively metabolized by CYP 3A4 to inactive pyridine derivatives. A crossover study involving a single administration of either 10 mg of (R)- or (S)-LER or 20 mg of rac-LER as a solution demonstrated no in vivo enantiomer interconversion
Status:
Possibly Marketed Outside US
Source:
ZANIDIP by Corsini, A.|Bonfatti, M.|Quarato, P.|Accomazzo, M.R.|Raiteri, M.|Sartani, A.|Testa, R.|Nicosia, S.|Paoletti, R.|Fumagalli, R.
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
(R)-Lercanidipine is enantiomer of antihypertensive drugs Lercanidipine, that acts by blocking L-type calcium channels, allowing relaxation and opening of blood vessels. The dihydropyridine calcium antagonists promote systemic vasodilatation by a reversible blockade of voltagedependent Ca2+ influx through L-type channels in the cell membrane. (S)-Lercanidipine has 100- to 200-fold greater affinity than the (R)-enantiomer for the L-type calcium channel. The pharmacokinectics of (S)- Lercanidipine has been evaluated in healthy volunteers, in elderly and non-elderly patients with hypertension, and in patients with renal or hepatic impairment. Patients from these studies were investigated after receiving a single 10 or 20 mgdose of [14C]-labeled rac-Lercanidipine as a solution. The maximum plasma concentrations of (S)-Lercanidipine were reached within 2–3 h and the area under the plasma concentration–time curves were not linearly related to the dose, indicating a saturable first-pass metabolism. The absorption of (S)-LER increases after the ingestion of a highfat meal. Lercanidipine is highly bound to plasma protein (>98%) in humans. Its volume of distribution of 2–2.5 L/kg was determined in healthy volunteers after intravenous infusion of 2 mg. Lercanidipine is extensively metabolized by CYP 3A4 to inactive pyridine derivatives. A crossover study involving a single administration of either 10 mg of (R)- or (S)-LER or 20 mg of rac-LER as a solution demonstrated no in vivo enantiomer interconversion
Status:
Possibly Marketed Outside US
Class (Stereo):
CHEMICAL (UNKNOWN)
Targets:
Conditions:
Cilnidipine (FRC-8653) is a dihydropyridine (DHP) type of calcium channel antagonist. The L-type Ca2+ channel blockade by cilnidipine affects predominantly vascular smooth muscle, thereby producing vasodilation of peripheral resistance vessels and coronary arteries. The blockade of N-type Ca2+ channels affects predominantly peripheral nerve endings of sympathetic neurons, thereby dilating blood vessels by lowering plasma catecholamine levels. Furthermore, renoprotective and neuroprotective effects as well as cardioprotective action of cilnidipine have been demonstrated in clinical practice or animal examinations. Cilnidipine was originated by Fuji & Rebio Pharmaceutical Co., Ltd. and developed jointly with Ajinomoto for the treatment of hypertension. Cilnidipine has been launched in Japan.
Status:
Possibly Marketed Outside US
Source:
Unknown by Chow, J. et al.
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Gastrodin is the main bioactive component of Gastrodia elata Blume (G. elata). Tian Ma Su Zhu She Ye (contains Gastrodin) It is an extensively used in the clinical practice of traditional Chinese medicine, to treat neurasthenia, neurasthenia syndrome, angioneurotic headache disorder, traumatic brain syndrome, vertigo meniere disease, medicinal with dizziness, vertigo, sudden deafness, vestibular neuronitis, vertebral basilar artery blood supply deficiency, etc. Apart from traditional claims, scientific reports support the antioxidative, anticonvulsive, antiinflammatory, antiepileptic, antiobesity, anxiolytic, and learning and memory improvements in activities of gastrodin
Status:
Possibly Marketed Outside US
Class (Stereo):
CHEMICAL (RACEMIC)
Targets:
Watanidipine (AE0047) had been NDA filed for the treatment of hypertension in Japan. Watanidipine (as Calbren®) was awaiting registration with Mitsubishi Pharma Corporation in Japan. However, Mitsubishi Pharma Corporation has discontinued the development of this drug. Watanidipine had also been in phase II clinical trials for the treatment of stroke and preclinical trials for atherosclerosis. However, no recent development has been reported. Watanidipine (AE0047) has being shown to be a calcium antagonist with protective effects against cerebral ischaemia and the occurrence of stroke in several animal models.
Status:
Possibly Marketed Outside US
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Ximelagatran (Exanta or Exarta, H 376/95) is an anticoagulant that has been investigated extensively as a replacement for warfarin that would overcome the problematic dietary, drug interaction, and monitoring issues associated with warfarin therapy. In 2006, its manufacturer AstraZeneca announced that it would withdraw pending applications for marketing approval after reports of hepatotoxicity (liver damage) during trials, and discontinue its distribution in countries where the drug had been approved (Germany, Portugal, Sweden, Finland, Norway, Iceland, Austria, Denmark, France, Switzerland, Argentina and Brazil). Ximelagatran is a prodrug that is rapidly converted after oral administration to the active compound melagatran. Melagatran is able to inhibit thrombin activity directly and quickly. The melagatran molecule binds to the arginine side pocket of thrombin, inactivating the thrombin. Following oral administration of ximelagatran, oral bioavailability (measured as melagatran) is 18% to 25%. Peak melagatran levels after a ximelagatran dose of 48 mg twice daily are achieved within approximately 2 hours. Ximelagatran is rapidly and extensively converted to melagatran in the liver and other tissues. This conversion is achieved by ester hydrolysis and reduction via two intermediate metabolites, hydroxymelagatran, and ethylmelagatran. The predominant compound in plasma is the active drug, melagatran. The elimination half-life of melagatran after an oral dose of ximelagatran is 2.5 to 4.3 hours.
Status:
Possibly Marketed Outside US
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Ximelagatran (Exanta or Exarta, H 376/95) is an anticoagulant that has been investigated extensively as a replacement for warfarin that would overcome the problematic dietary, drug interaction, and monitoring issues associated with warfarin therapy. In 2006, its manufacturer AstraZeneca announced that it would withdraw pending applications for marketing approval after reports of hepatotoxicity (liver damage) during trials, and discontinue its distribution in countries where the drug had been approved (Germany, Portugal, Sweden, Finland, Norway, Iceland, Austria, Denmark, France, Switzerland, Argentina and Brazil). Ximelagatran is a prodrug that is rapidly converted after oral administration to the active compound melagatran. Melagatran is able to inhibit thrombin activity directly and quickly. The melagatran molecule binds to the arginine side pocket of thrombin, inactivating the thrombin. Following oral administration of ximelagatran, oral bioavailability (measured as melagatran) is 18% to 25%. Peak melagatran levels after a ximelagatran dose of 48 mg twice daily are achieved within approximately 2 hours. Ximelagatran is rapidly and extensively converted to melagatran in the liver and other tissues. This conversion is achieved by ester hydrolysis and reduction via two intermediate metabolites, hydroxymelagatran, and ethylmelagatran. The predominant compound in plasma is the active drug, melagatran. The elimination half-life of melagatran after an oral dose of ximelagatran is 2.5 to 4.3 hours.
Status:
Possibly Marketed Outside US
Class (Stereo):
CHEMICAL (RACEMIC)
Conditions:
Lercanidipine is antihypertensive drugs which acts by blocking L-type calcium channels, allowing relaxation and opening of blood vessels. Lercanidipine exists as a racemate, with anti-hypertensive activity residing primarily in S-enantiomer. NDA for lercanidipine was submitted to FDA in 2002 by Forest Laboratories, but FDA refused to approve the drug, and lercanidipine is not marketed in USA. Lercanidipine is also investigated in preclinical models of epilepsy and ischemic stroke.